Skip to main content
Log in

Predator's invasion into an isolated patch with spatially heterogeneous prey distribution

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The invasion success of a diffusing predator which changes its diffusion coefficient depending on whether the prey exists or not is investigated. The prey is assumed to be immobile and distributed in an isolated patch. The isolated patch consists of two kinds of region: prey-existing zone and prey-vacant zone. We discuss what relation a heterogeneity of prey distribution has with the predator's invasion success into the patch. Its spatial heterogeneity appears to affect significantly the predator's invasion. In an Appendix we briefly treat an analogous problem involving two competing species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Allen, L. J. S. 1983a. Persistence and extinction in Lotka-Volterra reaction-diffusion equations.Math. Biosci.,65, 1–12.

    Article  MATH  MathSciNet  Google Scholar 

  • Allen, L. J. S. 1983b. Persistence and extinction in single-species reaction-diffusion models.Bull. math. Biol. 45, 209–227.

    Article  MATH  MathSciNet  Google Scholar 

  • Allen, L. J. S. 1987. Persistence, extinction, and critical patch number for island populations.J. math. Biol. 24, 617–625.

    MATH  MathSciNet  Google Scholar 

  • Berg, P. W. and J. L. McGregor. 1966.Elementary Partial Differential Equations. San Francisco: Holden-Day.

    Google Scholar 

  • Brown, J. H. 1971. Mammals on mountain tops: nonequilibrium insular biogeography.Am. Nat. 104, 547–559.

    Google Scholar 

  • Dubois, D. M. 1975a. Simulation of the spatial structuration of a patch of prey-predator plankton populations in the Southern Bight of the North Sea.Proc. Liege Colloq. Ocean Hydrodyn. 6th Mem. Soc. Roy. Sci. Liege VII, 75–82.

    Google Scholar 

  • Dubois, D. M. 1975b. A model of patchiness for prey-predator plankton populations.Ecol. Modelling 1, 67–80.

    Article  Google Scholar 

  • Guo Ben-Yu and B. D. Sleeman. 1985. Spatial patterning of the spruce budworm in the presence of defoliation. InLecture Notes in Mathematics, Vol. 1151. B. D. Sleeman and R. J. Jarvis (Eds), pp. 192–203. Berlin: Springer-Verlag.

    Google Scholar 

  • Guo Ben-Yu, A. R. Mitchell and B. D. Sleeman. 1983. Spatial patterning of the spruce budworm in a circular region.UDDM Report DE 83-5.

  • Gurney, W. S. C. and R. M. Nisbet. 1975. The regulation of inhomogeneous populations.J. theor. Biol. 52, 441–457.

    Article  Google Scholar 

  • Harper, K. T., D. C. Freeman, Ostler and L. G. Kikoft. 1978. The flora of Great Basin mountain ranges: diversity, sources and dispersal ecology.Great Basin Nat. Mem. 2, 81–103.

    Google Scholar 

  • Kierstead, H. and L. B. Slobodkin. 1953. The size of water masses containing plankton blooms.J. mar. Res. 12, 141–147.

    Google Scholar 

  • Levin, S. A. 1974. Dispersion and population interactions.Am. Nat. 108, 207–228.

    Article  Google Scholar 

  • Levin, S. A. 1976a. Population dynamic models in heterogeneous environments.Ann. Rev. Ecol. Syst. 7, 287–310.

    Article  Google Scholar 

  • Levin, S. A. 1976b. Spatial patterning and the structure of ecological communities. In:Some Mathematical Questions in Biology Lectures on Mathematics in the Life Sciences, Vol. 7, S. A. Levin (Ed.), pp. 1–36. Providence, RI: Ann. Math. Soc.

    Google Scholar 

  • Levin, S. A. 1986. Population models and community structure in heterogeneous environments. In:Mathematical Ecology: An Introduction, Biomathematics, Vol. 17, T. G. Hallam and S. A. Levin (Eds), pp. 295–320. Berlin: Springer-Verlag.

    Google Scholar 

  • Ludwig, D., D. G. Aronson and H. F. Weinberger. 1979. Spatial pattering of the spruce budworm.J. math. Biol. 8, 259–263.

    MathSciNet  Google Scholar 

  • MacArthur, R. H. 1972.Geographical Ecology: Patterns in the Distribution of Species. New York: Harper & Row.

    Google Scholar 

  • Maynards Smith, J. 1982.Evolution and the Theory of Games Cambridge: Cambridge University Press.

    Google Scholar 

  • McMurtrie, R. 1978. Persistence and stability of single-species and prey-predator systems in spatially heterogeneous environments.Math. Biol. 39, 11–51.

    Article  MATH  MathSciNet  Google Scholar 

  • Mimura, M., M. Tabata and Y. Hosono. 1979a. Multiple solutions of two-point boundary value problems of Neumann type with a small parameter. Researching Report 1, Konan Univ.

  • Mimura, M., Y. Nishiura and M. Yamaguti. 1979b. Some diffusive prey and predator systems and their bifurcation problems. InBifurcation Theory and Applications in Scientific Discriplines O. Gurel and O. E. Rössler (Eds), pp. 490–510. New York: Ann. N.Y. Acad. Sci.

    Google Scholar 

  • Nagylaki, T. 1975. Conditions for the existence of clines.Genetics 80, 595–615.

    Google Scholar 

  • Namba, T. 1980. Density-dependent dispersal and spatial distribution of a population.J. theor. Biol. 86, 351–363.

    Article  MathSciNet  Google Scholar 

  • Nayfeh, A. H. 1973.Perturbation Methods. New York: John Wiley.

    Google Scholar 

  • Okubo, A. 1980.Diffusion and Ecological Problems: Mathematical Models. New York: Springer-Verlag.

    Google Scholar 

  • Okubo, A. 1982. Critical patch size for plankton and patchiness. In:Lecture Notes in Biomathematics, Vol. 54, S. A. Levin (Ed.), pp. 456–477. Berlin: Springer-Verlag.

    Google Scholar 

  • Pacala, S. W. and J. Roughgarden. 1982. Spatial heterogeneity and interspecific competition.Theor. Pop. Biol. 21, 92–113.

    Article  MATH  MathSciNet  Google Scholar 

  • Platt, T. and K. L. Denman. 1975. A general equation for the mesoscale distribution of phytoplankton in the sea.Mem. Soc. Roy. Sci. Liege 7, 31–42.

    Google Scholar 

  • Powell, T. and P. J. Richerson. 1985. Temporal variation, spatial heterogeneity, and competition for resources in plankton system: a theoretical model.Am. Nat. 125, 431–464.

    Article  Google Scholar 

  • Rand, A. S. and E. E. Williams. 1969. The anoles of La Palma: aspects of their ecological relationships.Breviora 327, 1–18.

    Google Scholar 

  • Roughgarden, J. 1979.Theory of Population Genetics and Evolutionary Ecology: An Introduction. New York: Macmillan.

    Google Scholar 

  • Segel, L. A. and S. A. Levin. 1976. Application of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions. In:Topics in Statistical Mechanics and Biophysics: A Memorial to Julius L. Jackson, R. A. Piccirelli (Ed.), pp. 123–152. Proc. AIP Conf.

  • Seno, H. 1989. The effect of a singular patch on population persistence in a multi-patch system.Ecol. Modelling 43, 271–286.

    Article  Google Scholar 

  • Shigesada, N. 1984. Spatial distribution of rapidly dispersing animals in heterogeneous environments. In:Lecture Notes in Biomathematics, S. A. Levin and T. G. Hallam (Eds), pp. 478–491. Berlin: Springer-Verlag.

    Google Scholar 

  • Shigesada, N. and J. Roughgarden. 1982. The role of rapid dispersal in the population dynamics of competition.Theor. Pop. Biol. 21, 353–373.

    Article  MATH  MathSciNet  Google Scholar 

  • Shigesada, N., K. Kawasaki and E. Teramoto. 1979. Spatial segregation of interacting species.J. theor. Biol. 79, 83–99.

    Article  MathSciNet  Google Scholar 

  • Skellam, J. G. 1951. Random dispersal in theoretical populations.Biometrika 38, 196–218.

    Article  MATH  MathSciNet  Google Scholar 

  • Steele, J. H. 1974a. Spatial heterogeneity and population stability.Nature 83, 248.

    Google Scholar 

  • Steele, J. H. 1974b. Stability of plankton ecosystems. In:Ecological Stability, M. B. Usher and M. H. Williamson (Eds), pp. 179–191. London: Chapman & Hall.

    Google Scholar 

  • Steele, J. H. 1975.The Structure of Marine Ecosystems. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Teramoto, E. and H. Seno. 1988. Modeling of biological aggregation patterns. In:Biomathematics and Related Computational Problems, R. M. Ricciardi (Ed.), pp. 409–419. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Wiens, J. A. 1976. Population responses to patchy environments.Ann. Rev. Ecol. Syst.,7, 81–120.

    Article  Google Scholar 

  • Wroblewski, J. S., J. J. O'Brien and T. Platt. 1975. On the physical and biological scales of phytoplankton patchiness in the ocean.Mem. Soc. Roy. Sci. Liege 7, 43–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seno, H. Predator's invasion into an isolated patch with spatially heterogeneous prey distribution. Bltn Mathcal Biology 53, 557–577 (1991). https://doi.org/10.1007/BF02458629

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458629

Keywords

Navigation