Skip to main content
Log in

Experimental and theoretical modelling of intra-aortic balloon pump operation

  • Biomechanics
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The performance of intra-aortic balloon pumping is assessed on the basis of a mock circulation and a theoretical model of arterial pulse propagation. The parameters investigated include timing of onset and speed of inflation and deflation as well as pumped air volume. The models used do not contain any active peripheral elements with regulatory capabilities and so the simulated heart adjusts its stroke volume mechanically according to the operating conditions. The observed and calculated changes of typical quantities in terms of ‘stroke’ volume, ‘LV’, ‘aortic’ and ‘peripheral’ pressures are to be attributed, therefore, to the influence of the mechanical pump operation without physiological reactions of the circulatory system as a whole. It is found that timing details of the counterpulsation have a minor influence on the overall mechanical pump performance. Accordingly, the influence of physiological reactions of the cardiovascular system to changes in pump operation seems to be far more important than the one caused by the purely mechanical changes themselves. However, rapid inflation and deflation of the balloon may be accompanied by severe opening or closing shocks, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anliker, M., Rockwell, R. L. andOgden, E. (1971) Nonlinear analysis of flow pulses and shock waves in arteries.J. Appl. Math. Phys. (ZAMP),22, 217–246.

    Article  Google Scholar 

  • Anliker, M., Stettler, J. C., Niederer, P. andSchilt, W. (1978) Optimal operation of intra-aortic balloon pumps.Proc. Europ. Soc. Art. Organs (ESAO),V, 116–120.

    Google Scholar 

  • Holenstein, R., Niederer, P. andAnliker, M. (1980) A viscoelastic model for use in predicting arterial pulse waves.J. Biomech. Eng.,102, 318–325.

    Article  Google Scholar 

  • Jaron, D., Tomececk, J., Freed, P., Welkowitz, W., Fich, S. andKantrowitz, A. (1970) Measurement of ventricular load phase angle as an operating criterion for in-series assist devices: hemodynamic studies utilizing intra-aortic balloon pumping.Trans. Am. Soc. Artif. Int. Organs,16, 466–471.

    Google Scholar 

  • Jaron, D., Moore, T. W. andPing, H. (1985) Control of intraaortic balloon pumping: theory and guidelines for clinical applications.Ann. Biomed. Eng.,13, 155–175.

    Google Scholar 

  • Kao, C. andOhley, W. J. (1982) Influence of vascular parameters on the effectiveness of intra-aortic balloon pumping: a model study.Med. & Biol. Eng. & Comput.,20, 529–538.

    Google Scholar 

  • Kulinski, W. S., Jaron, D., Ohley, W. J. andGreenall, R. K. (1984) The intra-aortic balloon pump: a nonlinear digital computer model.J. Biomech. Eng.,106, 220–228.

    Article  Google Scholar 

  • Lorenz, G. (1973) Über die Wellenausbreitung in viskoelastischen Leitungen und ihre gasdynamische Analogie. Diss. TH Aachen.

  • McMahon, T. A., Clark, C., Murthy, V. S. andShapiro, A. H. (1971) Intra-aortic balloon experiments in a lumped-element hydraulic model of the circulation.J. Biomech.,4, 335–350.

    Article  Google Scholar 

  • Müller, A. (1950) Über die Fortpflanzungsgeschwindigkeiten von Druckwellen in dehnbaren Röhren bei zunehmender und strömender Flüssigkeit.Helv. Physiol. Acta,8, 228–241.

    Google Scholar 

  • Müller, A. (1959) Die mehrschichtige Rohrwand als Modell für die Aorta.,17, 131–145.

    Google Scholar 

  • Murthy, V. S., McMahon, T. A., Jaffrin, M. Y. andShapiro, A. H. (1971) The intra-aortic balloon for left heart assistance: an analytical model.J. Biomech.,4, 351–367.

    Article  Google Scholar 

  • Nerz, A. R., Myerowitz, P. D. andBlackshear, P. L., (1979) A simulation of the dynamics of counterpulsation.J. Biomech. Eng.,101, 105–111.

    Google Scholar 

  • Niederer, P. (1985) Damping mechanisms and shock-like transition in the human arterial tree.J. Appl. Math. Phys. (ZAMP),36, 204–220.

    Article  MATH  Google Scholar 

  • Philippe, E., Clark, J. W., Lande, A. andEllis, J. R. (1980) Microprocessor control of intra-aortic balloon pumping.Ann. Biomed. Eng.,8, 209–224.

    Article  Google Scholar 

  • Schilt, W., Freed, P. S., Khalil, G. andKantrowitz, A. (1967) Temporary non-surgical intraarterial cardiac assistance.Trans. ASAIO,12, 322–327.

    Google Scholar 

  • Stettler, J. C., Niederer, P. andAnliker, M. (1981) Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Parts I and II.Ann. Biomed. Eng.,9, 145–175.

    Article  Google Scholar 

  • Williams, M. J., Rubin, J. W. andEllison, R. G. (1977) Experimental determination of optimum performance of counterpulsation assist pumping under computer control.Comput. & Biomed. Res.,10, 545–559.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niederer, P., Schilt, W. Experimental and theoretical modelling of intra-aortic balloon pump operation. Med. Biol. Eng. Comput. 26, 167–174 (1988). https://doi.org/10.1007/BF02442260

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02442260

Keywords

Navigation