Skip to main content
Log in

Wave propagation and flow velocity profiles in compliant tubes

  • Biomechanics
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Wave propagation in compliant tubes filled with streaming fluids is usually handled with the method of characteristics. The latter refies however on one-dimensional flows, so violating the no-slip condition that real fluids satisfy on solid walls. The impact of this one-dimensional simplification has apparently not been investigated, which justifies the present two-dimensional approach. Here, a steady, inviscid and incompressible basic flow of arbitrary velocity profile Uo(r) and arbitrary cross-sectional mean velocity Ūo streams in a long, uniform, thin walled, compliant tube. The propagation of long-wavelength, small-amplitude perturbations is studied with a normal mode analysis. Analytical solutions show the importance of Uo(r). For example, if Uo(r) satisties the no-slip condition, then upstream wave propagation occurs regardless of Ūo. This questions the one-dimensional wave propagation theory and could possibly influence the interpretation of several physiological experimental data relying upon it, mainly in the vascular and respiratory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anliker, M., Rockwell, R. L. andOgden, E. (1971) Nonlinear analysis of flow and shock waves in arteries.J. Appl. Math. Phys. (ZAMP),22, 217–246.

    Article  Google Scholar 

  • Barnard, A. C. L., Hunt, W. A., Timelake, W. P. andVarley, E. (1966a) A theory of fluid flow in compliant tubes.Biophys. J.,6, 717–724.

    Article  Google Scholar 

  • Barnard, A. C. L., Hunt, W. A., Timelake, W. P. andVarley, E. (1966b) Peaking of the pressure in fluid-filled tubes of spatially varying compliance.,6, 735–746.

    Google Scholar 

  • Cancelli, C. andPedley, T. J. (1985) A separated-flow model for collapsible-tube oscillations.J. Fluid Mech.,157, 375–404.

    Article  Google Scholar 

  • Dardel, E. (1987) On wave propagation in elastic tubes conducting rotational flows.J. Appl. Math. Phys. (ZAMP),38, 366–377.

    Article  MATH  Google Scholar 

  • Dawson, S. V. andElliott, E. A. (1971) Wave-speed limitation on expiratory flow limitation—a unifying concept.J. Appl. Physiol.,43, 498–515.

    Google Scholar 

  • Fox, E. A. andSaibel, E. (1965) A formulation of the problem of flow through tubes. Proc. 4th Intern. Congr. Rheol., 4. Wiley, New York, 125–134.

    Google Scholar 

  • Hyatt, R. E., Mead, J., Rodarte, J. R. andWilson, T. A. (1979) Changes in lung mechanics: flow-volume relations. InThe lung in transition between health and disease.Macklem, P. T. andPermutt, S. (Eds.). Marcel Dekker, New York, 62–107.

    Google Scholar 

  • Johnson, R. S. (1971) Non-linear waves in fluid-filled elastic tubes and related problems. University of London Thesis.

  • Jones, R. T. (1969)Blood flow.Ann. Rev. Fluid. Mech.,1, 223–244.

    Article  Google Scholar 

  • Kamm, R. D. andShapiro, A. H. (1979) Unsteady flow in collapsible tube subjected to an external pressure or body forces.J. Fluid Mech.,95, 1–78.

    Article  MATH  Google Scholar 

  • Lighthill, M. J. (1978)Waves in fluid. Cambridge University Press, Cambridge, Chap. 2.

    Google Scholar 

  • Mink, S. N. (1984) Expiratory flow limitation and the response to breathing a helium-oxygen gas mixture in a canine model of pulmonary emphysema.J. Clin. Invest.,73, 1321–1334.

    Article  Google Scholar 

  • Morgan, G. W. andFerrante, W. R. (1955) Wave propagation in elastic tubes filled with streaming liquid.J. Acoust. Soc. Am.,27, 715–725.

    Article  MathSciNet  Google Scholar 

  • O'Donnell, C. R., Castille, R. G. andMead, J. (1986) Changes in flow-volume curve configuration with bronchoconstriction and bronchodilatation.J. Appl. Physiol.,61, 2243–2251.

    Google Scholar 

  • Pedersen, O. F. andIngram, R. H. (1985) Configuration of maximum expiratory flow-volume curve: model experiments with physiological implications.,58, 1305–1313.

    Google Scholar 

  • Pedley, T. J. (1980)The fluid mechanics of large blood vessels. Cambridge University Press, Cambridge, Chap. 2.

    MATH  Google Scholar 

  • Rooz, E., Wiesner, T. F. andNerem, R. M. (1985) Epicardial coronary blood flow including the presence of stenoses and aorto-coronary bypasses-I: model and numerical methods.Trans. ASME K: J. Biomech. Eng.,107, 361–367.

    Article  Google Scholar 

  • Shapiro, A. H. (1977) Steady flow in collapsible tubes.,99, 126–147.

    Google Scholar 

  • Skalak, R. (1972) Synthesis of a complete circulation. InCardiovascular fluid dynamics.Bergel, D. H. (Ed.), Academic Press, London and New York, 341–376.

    Google Scholar 

  • Streeter, V. L., Keitzer, W. F. andBohr, F. (1963) Pulsatile pressure and flow through distensible vessels.Circ. Res.,13, 3–20.

    Google Scholar 

  • Womersley, J. R. (1957) An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. WADC Technical Report TR 56-614, Defense Documentation Center.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dardel, E. Wave propagation and flow velocity profiles in compliant tubes. Med. Biol. Eng. Comput. 26, 46–49 (1988). https://doi.org/10.1007/BF02441827

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441827

Keywords

Navigation