Skip to main content
Log in

Mineral chemistry of ultramafic and mafic cumulates as an indicator of the arc-related origin of the Mersin ophiolite (southern Turkey)

  • Original Paper
  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Abstract

The Mersin ophiolite, represented by approximately 6-km-thick oceanic lithospheric section on the southern flank of the Taurus calcareous axis, formed in the Mesozoic Neo-Tethyan ocean some time during Late Cretaceous in southern Turkey. The ultramafic and mafic cumulates having over 3 km thickness consist of dunite ± chromite, wehrlite, clinopyroxenite at the bottom and pass into gabbroic cumulates in which leucogabbro, olivine-gabbro and anorthosite are seen. Crystallization order is olivine (Fo91−80) ± chromian spinel (Cr# 60-80), clinopyroxene (Mg#95−77), plagioclase (An95.6−91.6) and orthopyroxene (Mg#68−77). Mineral chemistry of ultramafic and mafic cumulates suggest that highly magnesian olivines, clinopyroxenes and absence of plagioclase in the basal ultramafic cumulates are in good agreement with products of high-pressure crystal fractionation of primary basaltic melts beneath an island-arc environment. Major, trace element geochemistry of the cumulative rocks also indicate that Mersin ophiolite was formed in an arc environment. Coexisting Ca-rich plagioclase and Forich olivine in the gabbroic cumulates show arc cumulate gabbro characteristics. Field relations as well as the geochemical data support that Mersin ophiolite formed in a supra-subduction zone tectonic setting in the southern branch of the Neo-Tethys in southern Turkey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aktas G, Robertson AHF (1984) The Maden complex, SE Turkey: evolution of a Neotethyan active margin. Geol Soc Spec Publ 17: 375–403

    Article  Google Scholar 

  • Aoki K, Kushiro I (1968) Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contrib Mineral Petrol 21:743–749

    Google Scholar 

  • Arculus RJ, Wills KJA (1980) The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J Petrol 21:743–99

    Article  Google Scholar 

  • Avsar N (1992) Namrun (Icel) yoresi Paleojen bentik foraminifer faunasi. MTA dergisi 114:127–144

    Google Scholar 

  • Bari SM de, Coleman RG (1986) Petrologic aspects of gabbros from the Tosnia complex, Chugach mountains, Alaska: evidence for deep magma chambers under an island arc. Geol Soc Am (abstracts and programs) 18:99

    Google Scholar 

  • Bari SM de, Coleman RG (1989) Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. J Geophys Res 94:4373–4391

    Article  Google Scholar 

  • Bari SM de, Kay SM, Kay, RW (1987) Ultramafic xenoliths from Adagdak Volcano, Adak, Aleutian islands, Alaska: deformed igneous cumulates from the moho of an island arc. J Geol 95:329–41

    Article  Google Scholar 

  • Beard JS (1986) Characteristic mineralogy of arc-related cumulate gabbros: implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology 14:848–851

    Article  Google Scholar 

  • Brown GC (1982) Calc-alkaline intrusive rocks: their diversity, evolution and relation to volcanic rocks. In: Thorpe RS (ed) Andesites: orogenic andesites and related rocks. Wiley, New York, pp 437–461

    Google Scholar 

  • Burns LE (1985) The Border Ranges ultramafic and mafic complex, south-central Alaska: cumulate fractionates of island-arc volcanics. Can J Earth Sci 22:1020–1038

    Article  Google Scholar 

  • Coish RA, Taylor LA (1979) The effects of cooling rate on texture and pyroxene chemistry in DSDP leg 34 basalt: a microprobe study. Earth Planet Sci Lett 42:389–398

    Article  Google Scholar 

  • Coleman RG (1986) Ophiolites and accretion of the North American Cordillera. Bull Soc Geol France 8:961–968

    Google Scholar 

  • Conrad WC, Kay RW (1984) Ultramafic and mafic inclusions from Adak island: crystallization history and implications for the nature of primary magmas and crustal evolution in the Aleutian arc. J Petrol 25:88–125

    Article  Google Scholar 

  • Dick HJB, Bullen T (1984) Chromium spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76

    Article  Google Scholar 

  • Dilek Y, Moores EM (1990) Regional tectonics of the eastern Mediterranean ophiolites. In: Malpas J, Moores E, Panayiotou A, Xenophontos C (eds) Ophiolites-oceanic crustal analogues. Proc Troodos Ophiolite Symp 1987, pp 295–309

  • Dungan MA, Long PE, Rhodes JM (1978) The petrology, mineral chemistry, and one atmosphere phase relations of basalts from site 395. Init Rep Deep Sea Drill Project 45:461–472

    Google Scholar 

  • Dupuy C, Dostal J, Marcelot G, Bougault H, Joron JL, Treuil M (1982) Geochemistry of basalts from central and southern New Hebrides arcs: implication for their source rock composition. Earth Planet Sci Lett 60:207–225

    Article  Google Scholar 

  • Elthon D (1981) 1 atm phase equilibria of basalts from the Tortuga ophiolite complex, with implications for magma chamber processes. Chapman Conference on the Generation of the Oceanic Lithosphere-AGU

  • Elthon D (1987) Petrology of gabbroic rocks from the Mid-Cayman rise spreading center. J Geophys Res 92:658–682

    Article  Google Scholar 

  • Elthon D (1991) Geochernical evidence for formation of the Bay of Island ophiolite above subduction zone. Nature 354:140–143

    Article  Google Scholar 

  • Elthon D, Casey JF, Komor S (1982) Mineral chemistry of ultramafic cumulates from the North Arm Mountain massif of the Bay of Islands ophiolite: evidence for high-pressure crystal fractionation of oceanic basalts. J Geophys Res 87:8717–8734

    Article  Google Scholar 

  • Elthon D, Casey JF, Komor S (1984) Cryptic mineral chemistry variations in a detailed traverse through the cumulate ultramafic rocks of the North Arm Mountain massif of the Bay of Island ophiolite, Newfoundland. Geol Soc Lond Spec Publ 13:83–97

    Article  Google Scholar 

  • Fisk MR, Schilling JG, Sigurdsoon H (1980) An experimental investigation of Iceland and Reykjanes Ridge tholeiites. I. Phase relations. Contrib Mineral Petrol 74:361–374

    Article  Google Scholar 

  • Flower MFJ, Robinson PT, Schmincke HU, Ohnmacht W (1977) Magma fractionation systems beneath the Mid-Atlantic ridge at 36–37°N. Contrib Mineral Petrol 64:167–195

    Article  Google Scholar 

  • Fujimaki H (1986) Fractional crystallization of the basaltic suite of Usu volcano, southwest Hokkaido, Japan, and its relationships with the associated felsic suite. Lithos 19:129–140

    Article  Google Scholar 

  • Gamble RP, Taylor LA (1980) Crystal/liquid partitioning in augite: effects of cooling rate. Earth Planet Sci Lett 47:21–33

    Article  Google Scholar 

  • Green TH, Ringwood AE (1967) Genesis of basaltic magmas. Contrib Mineral Petrol 15:103–190

    Article  Google Scholar 

  • Gust DA, Johnson RW (1981) Amphibole bearing cumulates from Boisa island, Papua New Guinea: evaluation of the role of fractional crystallization in an andesitic volcano. J Geol 89:219–232

    Article  Google Scholar 

  • Hébert R (1982) Petrography and mineralogy of oceanic peridotites and gabbros: some comparisons with ophiolite examples. Ofioliti 7:299–324

    Google Scholar 

  • Hébert R (1985) Petrologie des roches ignées océaniques et comparison avec les complexs ophiolitiques du Québec, de Chypre et de L'Apennin: Thèse d'Etat, Université de Bretagne Occidentale, Brest, 542 pp

    Google Scholar 

  • Hèbert R, Laurent R (1990) Mineral chemistry of the plutonic section of the Troodos ophiolite: new constraints for genesis of arc-related ophiolites. In: Malpas J, Moores E, Panayiotou A, Xenophontos C (eds) Ophiolites-oceanic crustal analogues. Proc Troodos Ophiolite Symp 1987, pp 149–163

  • Hodges FN, Papike JJ (1976) DSDP site 334: magmatic cumulates from ocean layer 3. J Geophys Res 81:4135–4151

    Article  Google Scholar 

  • Irvine TN (1967) Chromian spinel as a petrogenetic indicator. Part 2. Petrologic applications. Can J Earth Sci 4:71-103 Jaques AL, Chappell BW, Taylor SR (1983) Geochemistry of cumulus peridotites and gabbros from the Marum ophiolite complex, northern Papua New Guinea. Contrib Mineral Petrol 82:154–164

    Google Scholar 

  • Johannes M (1978) Melting of plagioclase in the system Ab-AnH20 at PH2O=5 kbar, an equilibrium problem. Contrib Mineral Petrol 66:295–303

    Article  Google Scholar 

  • Juteau T (1980) Ophiolites of Turkey. Ofioliti 2:199–238

    Google Scholar 

  • Komor SC, Elthon D, Casey JF (1985) Mineralogical variations in layered ultramafic cumulate sequences at the North Arm Mountain massif, Bay of Island ophiolite, Newfoundland. J Geophys Res 90:7705–7736

    Article  Google Scholar 

  • Komor SC, Elthon D, Casey JF (1986) Petrology of layered gabbroic rocks from the North Arm Mountain massif, New-foundland. Contrib Mineral Petrol

  • Medaris LG (1972) High pressure peridotites from in south-western Oregon. Geol Soc Am Bull 83:41–58

    Article  Google Scholar 

  • Pallister JS, Hopson CA (1981) Samail ophiolite plutonic suite: field relations, phase variation, cryptic variation and layering and a model of a spreading ridge magma chamber. J Geophys Res 86:2593–2644

    Article  Google Scholar 

  • Parlak O, Delaloye M, Bingöl E (1995a) Magma chamber process in Mersin ophiolite, S. Turkey. Abstracts of Int Ophiolite Symp, 18–23 September, Pavia, Italy, 109 pp

  • Parlak O, Delaloye M, Bingöl E (1995b) Geochemistry and tectonic setting of volcanic rocks in Mersin ophiolite, S. Turkey. Abstracts of Int Earth Sci Colloquium on the Aegean Region (IESCA-95), 9–14 October, Izmir (Gtilltik), Turkey, 43 pp

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47

    Article  Google Scholar 

  • Pearce JA, Lippard SJ, Roberts S (1984) Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP, Howells MF (eds) Marginal basin geology. Blackwell, Oxford, pp 77–94

    Google Scholar 

  • Ricou LE (1971) Le croissant ophiolitique péri-arabe, une ceinture de nappes meses en place au Crétacé supérieur. Rev Géog Phys Géol Dyn 13:327–349

    Google Scholar 

  • Robertson AHF (1994) Role of the tectonic facies concept in orogenic analysis and its application to Tethys in the eastern Mediterranean region. Earth Sci Rev 37:139–213

    Article  Google Scholar 

  • Ross M, Huebner JS (1975) A pyroxene geothermometer based on composition-temperature relationships of naturally occurring orthopyroxene, pigeonite and augite. In: Extended Abstracts of the Int Conference of Geothermometry and Geobarometry, Pennsylvania State University, University Park, Pennsylvania, 4 pp

    Google Scholar 

  • Sengör AMC, Yilmaz Y (1981) Tethyan evolution of Turkey: plate tectonic approach. Tectonophysics 75:181–241

    Article  Google Scholar 

  • Shervais JW (1990) Island arc and oceanic crust ophiolites: contrasts in the petrology, geochemistry and tectonic style of ophiolite assemblages in the California Coast ranges. In: Malpas J, Moores E, Panayiotou A, Xenophontos C (eds) Ophiolites-oceanic crustal analogues. Proc Troodos Ophiolite Symposium 1987, pp 507–520

  • Smith AG, Hurley AM, Briden JC (1981) Phanerozoic palaeocontinental maps. Cambridge University Press, Cambridge, p. 102

    Google Scholar 

  • Smith TE, Huang CH, Wallawender MJ, Cheung P, Wheeler C (1983) The gabbroic rocks of the Peninsular Ranges Batholiths, southern California: cumulate rocks associated with calcalkalic basalts and andesites. J Volcan Geotherm Res 18:249–278

    Article  Google Scholar 

  • Stern RJ (1979) On the origin of andesite in the northern Mariana island arc: implications from agrigan. Contrib Mineral Petrol 68:207–219

    Article  Google Scholar 

  • Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33

    Article  Google Scholar 

  • Yalimz MK, Göncüoglu MC, Floyd PA (1994) Geochemical characteristics and geodynamic interpretation of the Supra-subduction Sarikaman ophiolite, Central Anatolia. Abstracts of Int Volcanological Congr (IAVCEI-94) 12–16 September, Ankara, Turkey, 162 pp

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parlak, O., Delaloye, M. & Bíngöl, E. Mineral chemistry of ultramafic and mafic cumulates as an indicator of the arc-related origin of the Mersin ophiolite (southern Turkey). Geol Rundsch 85, 647–661 (1996). https://doi.org/10.1007/BF02440102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02440102

Key words

Navigation