Skip to main content
Log in

Aging: Prospects for further increases in the functional life span

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Life spans in the developing countries now range from 76–79 years, 6–9 years less than the limit of 85 years imposed by aging. Aging is the accumulation of changes that increase the risk of death. Aging changes can be attributed to development, genetic defects, the environment, disease, and the major contributor, the inborn aging process. In 1954 the free radical theory of aging proposed that aging was caused by free radical reactions. Support for this theory is now extensive. There is a growing consensus that the theory is correct and that in mammals, aging is the accumulation of deleterious changes produced by free radical reactions, most initiated by the mitochondria (at an increasing rate with age), while the life span is determined by the rate of such damage to the mitochondria. This consensus bodes well for future efforts to increase the functional life span, i.e., the period of healthy, productive life. Some of the data which resulted in this consensus are presented.

Studies based on the free radical theory of aging suggest that the average life expectancy at birth (ALE-B), a rough measure of the functional lifespan, can be increased in the developed countries (in addition to the 3–5 years that may optimistically still be achieved by conventional measures), so as to more closely approach the potential “natural” maximum value of 85 years—and to exceed it if the aging process is slowed. This can be accomplished by: 1) keeping body weight down, at a level compatible with a sense of well-being, 2) ingesting diets adequate in essential nutrients and designed to minimize random damaging free radical reactions in the body, 3) supplementing the diet with one or more antioxidants, e.g., β-carotene, and vitamins C and E, and 4) employing measures to minimize accumulation of metals in the body capable of initiating adverse free radical reaction and of those than can impair the activity of some enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kohn, R. R.: Aging and agr-related diseases: normal processes, in Relation Between Normal Aging and Disease. edited by Johnson, H.A., New York, Raven Press, 1985, pp. 1–44.

    Google Scholar 

  2. Upton, A. C.: Pathobiology, in The Biology of Aging edited by Finch, C.E., and Hayflick, L., New York, Van Nostrand, 1977. pp. 513–535.

    Google Scholar 

  3. Sveriges officiella statistik. Befolknings-forandringar. Livslangstabeller, 1951–1993. Statistiska centralbyran, Stockhlom, Sweden, 1993, pp. 114–115.

  4. Jones, H. R.: The relation of human health to age, place and time, in Handbook of Aging and the Individual, edited by Birren, J. E., Chicago, Chicago University Press, 1955, 333–363.

    Google Scholar 

  5. National Center for Health Statistics. Vital Statistics of the United States. 1985. Life Tables, Vol. 2(6). Hyattsville, MD, (U.S. Dept. Health & Human Serv.) PHS Publ. No. 88-1104, 1988, p.9.

    Google Scholar 

  6. Dublin, L. I., Lotka, A.J., and Spiegelman, M.: The contribution of medical and sanitary science to health and longevity, in Length of Life, New York, Ronald Press, 1949, pp. 141–166.

    Google Scholar 

  7. Comfort, A.: The Biology of Senescence. 3rd edition. New York, Elsevier, 1979, pp.81–86.

    Google Scholar 

  8. Office Federal de la Statistique. Suisse — Table de Mortalite 1950–1992. Berne, Switzerland, Swiss Government, 1993.

    Google Scholar 

  9. National Center for Health Statistics. Annual Summary of Births, Marriages, Divorces, and Deaths. United States. 1992. Monthly Vital Statistics 41:(13). Hyattsville, MD (U.S. Dept. Health Human Ser.) PHS Publ. No. 93-1120, 1993.

    Google Scholar 

  10. Statistics and Information Department. 1992. Minister’s Secretariat, Ministry Health Welfare: Abridged Life Tables for Japan, Average Life Expectancy 1948–1992, Tokyo 162, Japan, Japanese Government, 1992.

    Google Scholar 

  11. Woodhall, B., and Joblon, S.: Prospects for future increases in average longevity. Geriatrics, 12: 586–591, 1957.

    PubMed  CAS  Google Scholar 

  12. Fries, J.F.: Aging, natural death, and the compression of morbidity. N. Engl. J. Med.. 303: 130–135, 1988.

    Article  Google Scholar 

  13. Olshansky, S. J., Carnes, B. A., and Cassel, C.: In search of Methuselah: estimating the upper limits to human longevity. Science, 250: 634–640, 1990.

    PubMed  CAS  Google Scholar 

  14. Curtin, L. R., and Armstrong, R. J.: National Center for Health Statistics. United States life tables eliminating certain causes of death. U.S. Decennial Life Tables for 1979–1981. Vol. 1(2) (U.S. Dept. Health Human Serv.) PHS Publ. No. 88-1150-2, 1988, p.56.

    Google Scholar 

  15. Rockstein, M., Sussman, M. L., and Chesky, J., editors: Theoretical Aspects of Aging. New York, Academic Press, 1974.

    Google Scholar 

  16. Warner, H. R., Butler, R. N., Sprott, R. L., and Schneider, E. L., editors: Modern Biological Theories of Aging, New York, Raven Press, 1987.

    Google Scholar 

  17. Medvedev, Z. A.: An attempt at a rational classification of theories of aging. Biological Review, 65: 375–398, 1990.

    CAS  Google Scholar 

  18. Bjorksten, J.: The crosslinkage theory of aging. J. Amer. Geriatr. Soc., 16: 408–427, 1968.

    CAS  Google Scholar 

  19. Walford, R. L.: The Immunologic Theory of Aging. Copenhagen, Munksgaard, 1969

    Google Scholar 

  20. Harman, D.: Free radical involvement in aging: pathophysiology and therapeutic implications. Drugs & Aging, 3: 60–80, 1993.

    CAS  Google Scholar 

  21. Hayflick, L.: Origins of longevity, in Modern Biological Theories of Aging, edited by Warner, H. R., Butler, R. N., Sprott, R. L., and Schneider, E. L., New York, Raven Press, 1987, pp. 21–34.

    Google Scholar 

  22. Rothstein, M.: Biochemical studies of aging. Chem. & Eng. News, 64(No. 32): 26, 1986.

    CAS  Google Scholar 

  23. Schneider, E. L. 1987. Theories of aging: a perspective, in Modern Biologic Theories of Aging, edited by Warner, H. R., Butler, R. N., Sprott, R. L., and Schneider, E. L., New York, Raven Press, 1987, pp.1–4.

    Google Scholar 

  24. Vijg, J.: Searching for the molecular basis of aging: the need for life extension models. Aging, 2: 227–229, 1990.

    PubMed  CAS  Google Scholar 

  25. Harman, D.: Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11: 298–300, 1956.

    PubMed  CAS  Google Scholar 

  26. Harman, D.: Role of free radicals in mutation, cancer, aging, and the maintenance of life. Rad. Res., 16: 753–763, 1962.

    CAS  Google Scholar 

  27. Harman, D.: The aging process. Proc. Natl. Acad. Sci. USA, 78: 7124–7128, 1981.

    PubMed  CAS  Google Scholar 

  28. Harman, D.: Free radical theory of aging: history, in Free Radicals and Aging, edited by Emerit, I., and Chance, B., Basel, Birkhauser, 1992. pp.1–10.

    Google Scholar 

  29. Nonhebel, D. C., and Walton, J. C.: Free Radical Chemistry, Cambridge, MA, Univ. Press, 1974.

    Google Scholar 

  30. Pryor, W. A.: Free Radicals, New York, Raven Press, 1966.

    Google Scholar 

  31. Freeman, B. A., and Crapo, J. D.: Biology of disease: free radicals and tissue injury. Lab. Invest., 47: 412–426, 1982.

    PubMed  CAS  Google Scholar 

  32. Halliwell, B., and Gutteridge, J. M. C.: Free radicals in biology and medicine, 2nd edition, Oxford, Clarendon Press, 1989.

    Google Scholar 

  33. Pryor, W. A., editor: Free radicals in biology. Vol. 1–6. New York, Academic Press, 1976–1984.

    Google Scholar 

  34. Harman, D.: Free radical theory of aging: origin of life, evolution, and aging. Age, 3: 100–102, 1980.

    Article  Google Scholar 

  35. Caims-Smith, A. G.: The life puzzle. Toronto, University of Toronto Press, 1971.

    Google Scholar 

  36. Calvin, M.: Chemical Evolution. New York, Oxford University Press, 1969.

    Google Scholar 

  37. Day, W.: Genesis on planet earth. East Lansing, Mich., House of Talos, 1979.

    Google Scholar 

  38. Folsome, C. E.: The origin of life. San Francisco, W.H. Freeman, 1979.

    Google Scholar 

  39. Altman, K. I., Gerber, G. B., and S. Oakada, S.: Radiation Chemistry, Vols. 1 and 2, New York, Academic Press, 1978.

    Google Scholar 

  40. Mead, J.: Free radical mechanisms of lipid damage and consequences for cellular membranes, in Free Radicals in Biology, Vol. 1, edited by Pryor, W. A., New York, Academic Press, 1976, pp.51–68.

    Google Scholar 

  41. Scott, G.: Atmospheric oxidation and antioxidants. New York, Elsevier Press, 1965.

    Google Scholar 

  42. Klebanoff, S. J.: Oxygen metabolism and the toxic properties of phagocytes. Ann. Intern. Med., 93: 480–489, 1980.

    PubMed  CAS  Google Scholar 

  43. Porter, N. H.: Prostaglandin endoperoxides, in Free Radicals in Biology, Vol. 4, edited by Pryor, W. A., New York, Academic Press, 1988, pp. 261–294.

    Google Scholar 

  44. Santo, R., and Omura, T., editors: Cytochrome P-450. New York, Academic Press, 1978.

    Google Scholar 

  45. Loach, P. A., and Hales, B. J.: Free radicals in photosynthesis, in Free Radicals in Biology, Vol. 1, edited by Pryor, W. A., New York, Academic Press, 1978, pp. 199–237.

    Google Scholar 

  46. Chance, B., Sies, H., and Boveris, A.: Hydroperoxide metabolism in mammalian organs. Physiol. Rev., 59: 527–605, 1979.

    PubMed  CAS  Google Scholar 

  47. Harman, D.: The biological clock: the mitochondria? J. Amer. Geriatr. Soc., 20: 145–147, 1972.

    CAS  Google Scholar 

  48. Nohl, H., and Hegner, D.: Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem., 82: 863–867, 1978.

    Article  Google Scholar 

  49. Zehnder, A. J. B., and Svensson, B. H.: Life without oxygen: what can and what cannot? Experientia, 42: 1197–1205, 1986.

    Article  PubMed  CAS  Google Scholar 

  50. Gottschalk, G., and Andressen, J. R.: Energy metabolism in anaerobes, in International Review of Biochemistry, Vol. 21, Microbial Biochemistry, edited by Quale, J. R., Baltimore, University Park Press, 1979, pp. 85–115.

    Google Scholar 

  51. Ljones, T., and Burris, R. H.: Evidence for one-electron transfer by the Fe proteins of nitrogenase. Biochem. Biophys. Res. Commun., 80: 22–25, 1978.

    Article  PubMed  CAS  Google Scholar 

  52. Michaelson, A. M., and McCord, J. M., editors: Superoxide and superoxide dismutases. New York, Academic Press, 1977.

    Google Scholar 

  53. Flohe, L., Gunzies, W. A., and Landenstein, R.: 1976. Glutathione peroxidases, in Glutathione: Metabolism and Function, Vol. 1, edited by Arias, M. and Jakoby, U.B., New York, Raven Press, 1976, pp. 115–138.

    Google Scholar 

  54. de Duve, C., and Hayaishi, O, editors: Tocopherol, Oxygen, and Biomembranes. New York, Elsevier/North Holland, 1978.

    Google Scholar 

  55. Frei, B., England, L., and Ames, B: Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. USA, 86: 6377–6381, 1989.

    PubMed  CAS  Google Scholar 

  56. Prez-Campo, R., Lopez-Torres, M., Paton, D., Sequeros, E., and Barja de Quiroga, G.: Lung antioxidant enzymes, peroxidation, glutathione system and oxygen consumption in catalase inactivated young and old Rana Perezi frogs. Mech. Ageing Dev., 56: 281–292, 1990.

    Article  Google Scholar 

  57. Rao, G., Xia, E., and Richardson, A.: Effect of age on the expression of antioxidant enzymes in male Fischer F344 rats. Mech. Ageing Dev., 53: 49–60, 1990.

    Article  PubMed  CAS  Google Scholar 

  58. Semsei, I., Rao, G., and Richardson, A.: Expression of superoxide dismutase and catalase in rat brain as a function of age. Mech. Ageing Dev., 58: 13–19, 1991.

    Article  PubMed  CAS  Google Scholar 

  59. Sohal, R.S., Arnold, L.H., and Orr, W. C.:1990. Effect of age on superoxide dismutase, catalase, glutathione: reductase, inorganic peroxides, TBA-reactive material, GSH/GSSG, NADPH/NADP+ in Drosophila melanogaster. Mech. Ageing Dev., 56: 223–235, 1990.

    Article  PubMed  CAS  Google Scholar 

  60. Sohal, R. S., Arnold, L. A., and Sohal, B. H.: Age-related changes in antioxidant enzymes and peroxidant generation in tissues of the rat with special references to parameters in two insect species. Free Radical Biol. Med., 9: 495–500, 1990.

    Article  CAS  Google Scholar 

  61. Stadtman, E. R.: Metal ion-catalyzed oxidation of proteins: biochemical mechanisms and biological consequences. Free Radical Biol. Med., 9: 315–325, 1990.

    Article  CAS  Google Scholar 

  62. Sagai, M., and Ichinose, T.: Age-related changes in lipid peroxidation as measured by ethane, ethylene, butane and pentane in respired gases by rats. Life Sci., 27: 731–738, 1980.

    Article  PubMed  CAS  Google Scholar 

  63. Cutler, R. G. Peroxide-producing potential of tissues: inverse correlation with longevity of mammalian species. Proc. Nat. Acad. Sci. USA., 82: 4798–4802, 1985.

    PubMed  CAS  Google Scholar 

  64. Munkers, K. D., Rana, R. S., and Goldstein, E.: Genetically determined conidial longevity is positively correlated with superoxide dismutase, catalase, glutathione peroxidase, cytochrome c peroxidase, and ascorbate free radical reductase activities in Neurospora crassa. Mech. Ageing Dev., 24: 83–100, 1984.

    Article  Google Scholar 

  65. Dwyer, S., Berrios, A., and Arking, R.: 1989. Extended longevity and enhanced antioxidant defenses in Drosophila. Gerontol., 29: 186a, 1989.

    Google Scholar 

  66. Johnson, T. E., and Lithgow, G. J.: The search for the genetic basis of aging: the identification of gerontogenes in the nematode Caenorhabditis elegans. J. Amer. Geriatr. Soc., 40: 936–945, 1992.

    CAS  Google Scholar 

  67. Munkres, K. D.: Genetical, developmental, and thermal regulation of antioxidant enzymes in Neurospora. Free Radical Biol. Med., 9: 23–28, 1990.

    Article  CAS  Google Scholar 

  68. Storz, G., Tartaglia, L. A., and Ames, B.N.: Transcriptional regulators of oxidative stress-inducible genes: direct activation by oxidation. Science, 248: 189–194, 1990.

    PubMed  CAS  Google Scholar 

  69. Favreau, L. V., and Pickett, C B.: Transcriptional regulation of the rat NAD(P)H:quione reductase gene. J. Biol. Chem., 266; 4556–4561, 1991.

    PubMed  CAS  Google Scholar 

  70. Reveillaud, I., Niedzwicchi, A., Bensch, K. G., and Fleming, J. E.: Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance to oxidative stress. Mol Cell. Biol., 11: 632–6401, 1991.

    PubMed  CAS  Google Scholar 

  71. Orr, W. C., and Sohal, R. S.: The effects of catalase gene overexpression on life span and resistance to oxidative stress in transgenic Drosophilia melanogaster. Arch. Biochem. Biophys., 297: 35–41, 1992.

    Article  PubMed  CAS  Google Scholar 

  72. Epstein, C. J., Avaraham, K.B., Lovett, M., Smith, S. Elroy-Stein, O., et. al. 1987. Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects of Downs syndrome. Proc. Natl. Acad. Sci. USA., 84: 8044–8048, 1987.

    PubMed  CAS  Google Scholar 

  73. Ceballos-Picot, I., Nicole, A., Brand, P., Grimber, G., Delacourte, A. et. al. 1991. Neuronal-specific expression of human copper-zinc superoxide dismutase gene in transgenic mice: animal model of gene dosage effects in Downs syndrome. Brain Res., 552: 198–214, 1991.

    Article  PubMed  CAS  Google Scholar 

  74. Sinet, P. N.: Metabolism of oxygen derivatives in Down’s syndrome, in Annals of the New York Academy of Sciences, Vol. 396, Alzheimer’s Disease, Down’s Syndrome, Aging, edited by Sinet, F. M., and Merril, C. R., 1982, pp. 83–94.

  75. Orr, W. C., and Sohal, R. S.: Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophilia melanogaster. Science, 263: 1128–1130, 1994.

    PubMed  CAS  Google Scholar 

  76. Joenje, H., Oostra, J. P., and Vand der Valk, P.: Some characteristics of hyperoxia-adapted HeLa cells. Lab.Invest., 52: 420–428, 1985.

    PubMed  CAS  Google Scholar 

  77. Freeman, B. A. 1984. Biological sites and mechanisms of free radical production, in Free Radicals in Molecular Biology, Aging, and Disease, edited by Armstrong, D., Sohal, R. S., Cutler, R. G., and Slater, T. F., New York, Raven Press, 1984, pp.43–52.

    Google Scholar 

  78. Ames, B. N., Shigenaga, M. K., and Hagen, T. M.: 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA, 90:7915–7922, 1993.

    PubMed  CAS  Google Scholar 

  79. Pacifici, R. E., and Davies, K. J. A.: Protein, lipid and DNA repair systems in oxidative stress: the free-radical theory of aging revisited. Gerontol., 37: 166–180, 1991.

    CAS  Google Scholar 

  80. Harman, D.: Lipofuscin and ceroid formation: the cellular recycling system, in Lipofuscin and Ceroid Pigments, edited by Porta, E. A., New York, Plenum Press, 1990, pp. 3–15.

    Google Scholar 

  81. Porta, E. A., Mower, H. F., Moroye, M., Lee, Ch., and Palumbe, N. E.: Differential features between lipofuscin (age pigment) and various experimentially produced “ceroid pigments”, in Lipofuscin — 1987: State of the Art, edited by Zs.-Nagy, I., Amsterdam, Exerpta Medica, 1987, pp. 341–374.

    Google Scholar 

  82. Nohl, H., and Kramer, J.. Molecular basis of age-dependent changes in the activity of adenine nucleotide translocase. Mech. Ageing Dev., 14: 137–144, 1980.

    Article  PubMed  CAS  Google Scholar 

  83. Zs.-Nagy, I.: Functional consequences of free radical damage to cell membranes, in CRC Handbook of Free Radicals and Antioxidants in Biomedicine, Vol. 1., edited by Miquel, J., Quintanilha, A. T., and Weber, H., Boca Raton, FL, CRC Press, 1989, pp. 199–207.

    Google Scholar 

  84. Zs.-Nagy, I.: The Membrane Hypothesis of Aging. Boca Raton, FL, CRC Press, 1994.

    Google Scholar 

  85. Bailey, A. J., Ranta, M. H., Nicholls, A. C., Partridge, S.M. and Elsden, D. F.: Isolation of alpha amino adipic acid from mature dermal collagen and elastin: evidence for an oxidative pathway in the maturation of collagen and elastin. Biochem. Biophys. Res. Commun., 78: 1403–1410, 1977.

    Article  PubMed  CAS  Google Scholar 

  86. Baynes, J. W.: Role of oxidative stress in development of complications in diabetes. Diabetes, 40: 405–412, 1991.

    PubMed  CAS  Google Scholar 

  87. Dunn, J. A., McChance, D. R., Thrope, S. R., Lyons, T. J., and Baynes, J. W.: Age-dependent accumulation of N′-(carboxymethyl)lysine and N′-(carboxymethyl)hydroxylysine in human skin collagen. Biochem., 30: 1205–1210, 1991.

    Article  CAS  Google Scholar 

  88. Richter, C., Park, J. W., and Ames, B. N.: Normal oxidative damage to mitochondrial and nuclear-DNA is extensive. Proc. Natl. Acad. Sci. USA, 85: 6465–6467, 1988.

    PubMed  CAS  Google Scholar 

  89. Rattan, S. I. S.: DNA damage and repair during cellular aging. Intern. Rev. Cytol., 116: 47–48, 1989.

    Article  CAS  Google Scholar 

  90. Tas, S., and Walford, R. L.: Increased disulfide-mediated condensation of the nuclear DNA-protein complex in lymphocytes during postnatal development and aging. Mech. Ageing Dev., 19: 73–84, 1982.

    Article  PubMed  CAS  Google Scholar 

  91. Orrenius, S., McConkey, D. S., Bellomo, G., and Nicotera, P.: Role of Ca2+ in toxic cell killing. Trends Pharmacol. Sci., 10: 281–285, 1989.

    Article  PubMed  CAS  Google Scholar 

  92. Orrenius, S., McConkey, D. S., and Nicotera, P.: Role of calcium in toxic and programmed cell death. Adv. Exper. Med. Biol., 283: 419–425, 1991.

    CAS  Google Scholar 

  93. Stadtman, E. R.: Covalent modification reactions are marking steps in protein turnover. Biochem., 29: 6328–6331, 1990.

    Google Scholar 

  94. Davis, K. J. A.: Protein damage and degradation by oxygen radicals. J. Biol. Chem., 262: 9895–9901, 1987.

    Google Scholar 

  95. Starke-Reed, P. E., and Oliver, C. N.: Protein oxidation and proteolysis during aging and oxidative stress. Arch. Biochem. Biophys., 275: 559–567, 1989.

    Article  PubMed  CAS  Google Scholar 

  96. Marzella, L., and Glaumann, H.: Autophagy, microautophagy and crinophagy as mechanisms for protein degradation, in Liposomes: Their Role in Protein Breakdown, edited by Glaumann, H., and Ballard, F. J., New York, Academic Press, 1987, pp. 319–366.

    Google Scholar 

  97. Roots, B. I.: Neurofilament accumulation induced in synapses by leupeptin. Science, 224: 971–972, 1983.

    Google Scholar 

  98. Ivy, G. O., Schottler, F., Wenzel, J., Baudry, M., and Lynch, G.: Inhibitors of lysosomal enzymes: accululation of lipofuscin-like dense bodies in brain. Science, 226: 985–987, 1984.

    PubMed  CAS  Google Scholar 

  99. Takauchi, S., and Miyoski, K.: Degeneration of neuronal processes in rats induced by a protease inhibitor, leupeptin. Acta Neuropathol, 78: 380–387, 1989.

    Article  PubMed  CAS  Google Scholar 

  100. Stadtman, E. R., and Oliver, C. N.: Minireview: metal-catalyzed oxidation of proteins. J. Biol. Chem., 266: 2005–2008, 1991.

    PubMed  CAS  Google Scholar 

  101. Stadtman, E. R.: Protein oxidation and aging. Science, 257: 1220–1223, 1992.

    PubMed  CAS  Google Scholar 

  102. Rivett, A. J.: Purification of a liver alkaline protease which degrades oxidatively modified glutamine synthetase; characterization as a high molecular weight cyteine proteinase. J. Biol. Chem., 260: 12600–12606, 1985.

    Google Scholar 

  103. Finch, D. E.: Longevity, Senescence and the Genome. Chicago, University of Chicago Press, 1990, pp. 410–412.

    Google Scholar 

  104. Adelman, R., Saul, R. L., and Ames, B. N.: Oxidative damage to DNA: relation to species metabolic rate and life span. Proc. Natl. Acad. Sci. USA, 85: 2706–2708, 1988.

    PubMed  CAS  Google Scholar 

  105. Simic, M. G., Bergtold, D. S.: Dietary modulation of DNA damage in humans. Mutat. Res., 250: 17–24, 1991.

    PubMed  CAS  Google Scholar 

  106. Cutler, R. G.: Antioxidants and aging. Amer. J. Clin. Nutr., 53(Suppl. 1): 373S–379S, 1991.

    PubMed  CAS  Google Scholar 

  107. Sohal, R. S., Agarwal, S., Dubey, A., and Orr, W. C.:Protein oxidative damage is associated with life expectancy of houseflies. Proc. Natl Acad. Sci. USA 90: 7255–7259, 1993.

    PubMed  CAS  Google Scholar 

  108. Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Landum, R. W., Cheng, M. S., Wu, J. F., and Fleyd, R. A.: Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-β-phenylnitrone. Proc. Natl. Acad. Sci. USA, 88: 3633–3636, 1991.

    PubMed  CAS  Google Scholar 

  109. Floyd, R. A.: Oxidative damage to behavior during aging. Science, 254: 1597, 1991.

    PubMed  CAS  Google Scholar 

  110. Harman, D., Hendricks, S., Eddy, D. E., and Seibold, J.: Free radical theory of aging: effect of dietary fat on central nervous system function. J. Amer. Geriatr. Soc., 24: 301–307, 1976.

    CAS  Google Scholar 

  111. Janzen, E. G.: A critical review of spin trapping in biological systems, in Free Radical in Biology, Vol.4, edited by Pryor, W. A., New York, Academic Press, 1984, pp. 115–154.

    Google Scholar 

  112. Quintanilha, A. T., and Packer, L.: Surface localization of sites of reduction of nitroxide spin-labeled molecules in mitochondria. Proc. Natl. Acad. Sci. USA, 74: 570–574, 1977.

    PubMed  CAS  Google Scholar 

  113. Mitchell, J. B., Samuni, A., Krishna, M. C., DeGraff, W.G., Ahn, M.S., Samuni, U., and Russo, A.: 1990. Biologically active metal-independent superoxide dismutase mimics. Biochem., 29: 2802–2807, 1990.

    Article  CAS  Google Scholar 

  114. Voest, E. E., van Faassen, E., and Marx, J. J. M.: An electron paramagnetic resonance study of the antioxidant properties of the nitroxide free radical tempo. Free Radical Biol. Med., 15: 589–595, 1993.

    Article  CAS  Google Scholar 

  115. Graf, E., Empson, K. L., and Eaton, J. W.: Phytic acid: a natural antioxidant. J. Biol. Chem., 262: 11647–11650, 1987.

    Google Scholar 

  116. Chamulitrat, W., Jordan, D. J., Mason, R. P., Saito, K., and Cutler, R. G.: Nitric oxide formation during light-induced decomposition of phenyl N-tert-butylnitrone. J. Biol. Chem., 268: 11520–11527, 1993.

    Google Scholar 

  117. The Maillard Reaction in Aging, Diabetes, and Nutrition, edited by Baynes, J. W., and Monnier, V. M.: New York, Alan R. Liss, Inc., 1989.

    Google Scholar 

  118. Wolff, D. P., Jiang, Z. Y., and Hunt, J. V.: Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radical Biol. Med., 10: 339–352, 1991.

    Article  CAS  Google Scholar 

  119. Fu, M-X., Knecht, K. J., Thorpe, S. R., and Baynes, J. W.: Role of oxygen in cross-linking and chemical modification of collagen by glucose. Diabetes, 46(Suppl. 2): 42–48, 1992.

    Google Scholar 

  120. Sakurai, T., Sugioka, K., and Nakano, M.: \(O\mathop \cdot \limits_2^ -\) generation and lipid peroxidation during the oxidation of a glycated polypeptide, glycated polylysine, in the presence of iron-ADP. Biochim. Biophy. Acta, 1043: 27–33, 1990.

    CAS  Google Scholar 

  121. Dyer, D. G., Blackledge, J. A., Thrope, S. R., and Baynes, J. W.: Formation of pentosidine during nonenzymatic browning of proteins by glucose: identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J. Biol. Chem., 266, 11654–11600, 1991.

    Google Scholar 

  122. Hunt, J. V., Smith, C. C. T., and Wolff, S. P.: Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes, 30: 1420–1424, 1990.

    Google Scholar 

  123. Monnier, V. M.: Toward a Maillard reaction theory of aging, in The Maillard Reaction in Aging, Diabetes, and Nutrition, edited by Baynes, J. W., and Monnier, V. M., New York, Alan R. Liss, 1989, pp.1–22.

    Google Scholar 

  124. Monnier, V. M., Sell, D. R., Nagaraj, R. H., and Miyata, S.: Mechanisms of protection against damage mediated by the Maillard reaction in aging. Gerontol., 37: 152–165, 1991.

    CAS  Google Scholar 

  125. Wautier, J.-L., Wautier, M.-P, Schmidt, A.-M, et al.: Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel walll via a specific receptor inducing oxidant stress in the vasculature: A link between surface-associated AGEs and diabetic complications. Proc. Natl. Acad. Sci. USA, 91: 7742–7746, 1994.

    PubMed  CAS  Google Scholar 

  126. Yan, S. D., Schmidt, A. M., Anderson G. M., Zhang, J. Brett, J., Zou, Y.S., Pinsky, D. and Stern, D.: Enhanced cellular oxidant stress by the interaction of advance glycation end products with their receptors/binding proteins. J. Biol Chem., 269: 9889–9897, 1994.

    PubMed  CAS  Google Scholar 

  127. Kristal, B. S., and Yu, B. P.: An emerging hypothesis: synergistic induction of aging by free radicals and Maillard reactions. J. Gerontol., 47: B107–Bl14, 1992.

    PubMed  CAS  Google Scholar 

  128. Harman, D.: Free radical theory of aging: role of free radicals in the origination and evolution of life, aging, and disease processes, in Free Radicals, Aging, and Degenerative Diseases, edited by Johnson, Jr., J. E., Walford, R., Harman, D., and Miquel, J., New York, Alan R. Liss, 1986, pp. 3–49.

    Google Scholar 

  129. Casarett, G. W.: Similarities and contrasts between radiation and time pathology, in Advances in Gerontology Research, Vol. 1. edited by Strehler, G. L., Oxford, Clarendon Press, 1964, pp. 109–163.

    Google Scholar 

  130. Upton, A. C.: Ionizing radiation and the aging process: a review. J. Gerontol., 12: 306–313, 1957.

    PubMed  CAS  Google Scholar 

  131. Lindrop, P. J., and Rothblat, B.: Long term effects of a single whole-body exposure of mice to ionizing radiation. Proc. R. Soc. London B., 154: 332–349, 350–368, 1961.

    Google Scholar 

  132. Harman, D.: The aging process: major risk factor for disease and death. Proc. Natl. Acad. Sci., 88: 5360–5363, 1991.

    PubMed  CAS  Google Scholar 

  133. Yu, B. P., Masoro, E. J., Murata, E. J., Bertrand, H. A., and Lynd, F. T.: Life span study of SPF Fischer 344 male rats fed ad libitum or restricted diets: longevity, growth, lean body mass and disease. J. Gerontol., 37: 130–141, 1982.

    PubMed  CAS  Google Scholar 

  134. Kohn, R. R.: Intrinsic aging of postmitotic cells, in Aging Gametes, edited by Blandau, R. J., New York, S. Karger, 1975, pp. 1–18.

    Google Scholar 

  135. Masoro, E. J., Yu, B. P., Bertrand, H. A.: Action of food restriction in delaying the aging process. Proc. Natl. Acad. Sci. USA, 79: 4239–4241, 1982.

    PubMed  CAS  Google Scholar 

  136. Lee, D. W., and Yu, B. P.: Modulation of free radicals and superoxide dismutases by age and dietary restriction. Aging, 2: 357–362, 1990.

    PubMed  CAS  Google Scholar 

  137. Weindruch, R. H., Cheung, M. K., Verity, A., and Walford, R. L: Modification of mitochonddat respiration by aging and dietary restriction. Mech. Ageing Dev., 12: 375–392, 1980.

    Article  PubMed  CAS  Google Scholar 

  138. Weindruch, R. H., and Walford, R. L.: Dietary restriction: effect on biological parameters, in The Retardation of Aging and Disease by Dietary Restriction, Springfield, Charles C. Thomas, 1988. pp. 117–229.

    Google Scholar 

  139. Weraarchakul, N., Strong R., Wood, W. G., and Richardson, A.: The effect of aging and dietary restricion on DNA repair. Exper. Cell Res., 181: 197–204, 1989.

    Article  CAS  Google Scholar 

  140. Koizumi, A., Weindruch, R., and Walford, R. L.: Influences of dietary restriction and age on liver enzyme activities and lipid peroxidation in mice. J. Nutr., 117: 361–367, 1987.

    PubMed  CAS  Google Scholar 

  141. Harman, D.: Free radical theory of aging: nutritional implications. Age, 1: 145–152, 1978.

    Article  Google Scholar 

  142. Block, G., Patterson, B., and Subar, A.: Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr. Cancer, 18: 1–29, 1992.

    Article  PubMed  CAS  Google Scholar 

  143. Diplock, A. T.: Antioxidant nutrients and disease prevention: an overview. Amer. J. Clin. Nutr., 53(Suppl. 1): 189S–193S, 1991.

    PubMed  CAS  Google Scholar 

  144. Jakoby, W. B., and Ziegler, D. M.: Minireview: The enzymes of detoxication. J. Biol. Chem., 265: 20715–20718, 1990.

    Google Scholar 

  145. Ames, B. N., Profet, M., and Gold, L. S.: Dietary pesticides (99.99% all natural). Proc. Natl. Acad. Sci. USA, 87:7777–7781, 1990.

    PubMed  CAS  Google Scholar 

  146. Williams, R. T.: Comparative patterns of drug metabolism. Fed. Proc., 26: 1029–1039, 1967.

    PubMed  CAS  Google Scholar 

  147. Prestera, T., Holtzclaw, W. D., Zhang, Y., and Talalay, P.: Chemical and molecular regulation of enzymes that detoxify carcinogens. Proc. Natl. Acad. Sci. USA, 90: 2965–2969, 1993.

    PubMed  CAS  Google Scholar 

  148. Sparnins, V. L., Venegas, P. L., and Wattenberg, L. W.: Glutathione S-transferase activity: enhancement by compounds inhibiting chemical carcinogenesis and by dietary constituents. J. Natl. Cancer Inst., 68: 493–496, 1982.

    PubMed  CAS  Google Scholar 

  149. Fotsis, T., Pepper, M., Adlercreutz, H., Fleischmann, G., Hase, T., Montesano, R., and Schweigerer, L.: Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc. Natl. Acad. Sci. USA, 90: 2690–2694, 1993.

    PubMed  CAS  Google Scholar 

  150. Stohs, S., Lawson, T. A., Anderson, L., and Bueding, E.: Effect of oltipraz, BHA, ADT, and cabbage on glutathione metabolism, DNA damage and lipid peroxidation in old mice. Mech. Ageing Dev., 37: 137–145, 1986.

    Article  PubMed  CAS  Google Scholar 

  151. Zhang, Y., Talalay, P., Cho, C.-G., and Posner, G. H.: A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc. Natl. Acad. Sci. USA, 89: 2399–2403, 1992.

    PubMed  CAS  Google Scholar 

  152. Benson, A. M., Hunkeler, M. J., and Talalay, P: Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc. Natl. Acad. Sci. USA, 77: 5216–5220, 1980.

    PubMed  CAS  Google Scholar 

  153. Benson, A. M., Barretto, P., and Stanley, J. S.: Induction of DT-diaphorase by anticarcinogenic sulfur compounds in mice. J. Natl. Cancer Inst., 76: 467–473, 1986.

    PubMed  CAS  Google Scholar 

  154. Chesis, P. L., Levin, D. E., Smith, M. T., Ernster, L., and Ames, B. N.: Mutagenicity of quinones: pathways of metabolic activation and detoxification. Proc. Natl. Acad. Sci. USA, 81: 1696–1700, 1984.

    PubMed  CAS  Google Scholar 

  155. De Long, M. J., Prochaska, H. J., and Talalay, P.: Induction of NAD(P)H:quinone reductase in murine hepatoma cells by phenolic antioxidants, azo dyes, and other chemoprotectors: a model system for the study of anticarcinogens. Proc. Natl. Acad. Sci. USA, 83: 787–791, 1986.

    PubMed  Google Scholar 

  156. Talalay, P., and Benson, A. M.: Elevation of quinone reductase activity by anticarcinogenic antioxidants. Adv. Enzyme Regul., 20: 287–300, 1982.

    Article  PubMed  CAS  Google Scholar 

  157. Benson, A. M., Batzinger, R. P., Ou, S-Y. L., Bueding, E., Cha, Y-N., and Talalay, P.: Elevation of hepatic glutathione S-transferase activities and protection against mutagenic metabolites of benzo(a)pyrene by dietary antioxidants. Cancer Res., 38: 4486–4495, 1978.

    PubMed  CAS  Google Scholar 

  158. Nakagawa, Y., Hiraga, K., and Suga, T.: Effects of butylated hydroxytoluene (BHT) on the level of glutathione and the activityof glutathione S-transferase in rat liver. J. Pharm. Dyn., 4: 823–826, 1981.

    CAS  Google Scholar 

  159. Cha, Y-N., and Heine, H. S.: Comparative effects of dietary administration of 2(3)-tert-Butyl-4-hydroxyanisole and 3,5-di-tert-butyl-4-hydroxytoluene on several hepatic enzyme activities in mice and rats. Cancer Res., 42: 2609–2615, 1982.

    PubMed  CAS  Google Scholar 

  160. Peraino, C., Fry, R. J. M., Staffeldt, E., and Christopher, J. P.: Enhancingeffects of phenobarbitone and butylated hydroxytoluene on 2-acetyl-aminofluorene-induced hepatic tumorigenesis in the rat. Food Cosmet. Toxicol., 15: 93–96, 1977.

    Article  PubMed  CAS  Google Scholar 

  161. Ulland, B. M., Weisburger, J. H., Yamamoto, R. S., and Weisburger, E. K.: Antioxidants and carcinogenesis: butylated hydroxytoluene, but not diphenyl-p-phenylenediamine, inhibits cancer induction by N-2-fluorenyl-acetamide and by N-hydroxy-N-2-fluorenylacetamide in rats. Food Cosmet. Toxol., 11: 199–207, 1973.

    Article  CAS  Google Scholar 

  162. Takahashi, O., and Hiraga, K.: Dose-response study of hemorrhagic death by dietary butylated hydroxytoluene (BHT) in male rats. Toxol. Appl. Pharmacol., 43: 399–406, 1978.

    Article  CAS  Google Scholar 

  163. Suzuki, H., Nakao, T., and Hiraga, K.: Vitamin K deficiency in male rats fed diets containing butylated hydroxytoluene (BHT). Toxol. Appl. Pharmacol., 50: 261–266, 1979.

    Article  CAS  Google Scholar 

  164. Huang, M.-T., Ho, C.-T., and Lee, C. Y., editors: American Chemical Society Series 507. Phenolic Compounds in Food and their Effects on Health, Vol. II, Amer. Chem. Soc., Washington, DC, 1992.

    Google Scholar 

  165. Harman, D.: Free radical theory of aging: effect of free radical inhibitors on the mortality rate of male LAF1 mice. J. Gerontol., 23: 476–482, 1968.

    PubMed  CAS  Google Scholar 

  166. Comfort, A.: Effect of ethoxyquin on the longevity of C3H mice. Nature, 229: 254–255, 1971.

    Article  PubMed  CAS  Google Scholar 

  167. Emanuel, N. M.: Free radicals and the action of inhibitors of radical processes under pathological states and aging in living organisms and man. Quart. Rev. Biophys., 9: 283–308, 1976.

    CAS  Google Scholar 

  168. Emanuel, N. M., Duburs, G., Obukhov, L. K., Uldrikis, J.: Drug for prophylaxis of aging and prolongation of lifetime. Chem Abstr., 94: 9632a, 1981.

  169. Heidrick, M. L., Hendricks, L. C., and Cook, D. E.: Effect of dietary 2-mercaptoethanol on the life span, immune system, tumor incidence and lipid peroxidation damage in spleen lymphocytes of aging BC3F1 mice. Mech. Ageing Dev., 27: 341–358, 1984.

    Article  PubMed  CAS  Google Scholar 

  170. Clapp, N. K., Satterfield, L.C., and Bowles, N. D.: Effects of the antioxidant butylated hydroxytoluene (BHT) on mortality in BALB/c mice. J. Gerontol. 34: 497–501, 1979.

    PubMed  CAS  Google Scholar 

  171. Miquel, J., and Johnson, Jr., J. E.: Effects of various antioxidants and radiation protectants on the life span and lipofuscin of Drosophila and C57BL/6J mice. Gerontologist, 15(No. 3) (Part2): 25, 1975.

    Google Scholar 

  172. Miquel, J., Economos, A. C., Bensch, K. G., Atlam, H., and Johnson, Jr., J. E.: Review of cell aging in Drosophila and mouse. Age, 2: 78–88, 1979.

    Article  Google Scholar 

  173. Bun-Hoi, N. P., and Ratsunamanga, A. R.: Age retardation in the rat by nordihydroguaiaretic acid. C. R. Soc. Biol., Paris, 153: 1180–1182, 1959.

    Google Scholar 

  174. Epstein, J., and Gershon, D.: Studies on aging in nematodes, IV. The effect of antioxidants on cellular damage and life span. Mech Ageing Dev., 1: 257–264, 1972.

    CAS  Google Scholar 

  175. Enesco, H. E., Verdone-Smith, C.: β-Tocopherol increases lifespan in the rotifer Philodina. Exper. Gerontol., 15: 335–338, 1980.

    Article  CAS  Google Scholar 

  176. Munkres, K. D., and Minssen, M.: Aging of Neurospora crassa. I. Evidence for the free radical theory of aging from studies of a natural death mutant. Mech. Ageing Dev., 5: 790–798, 1976.

    Google Scholar 

  177. Horrum, M. A., Harman, D., and Tobin, R. B.: Free radical theory of aging: effects of anti0xidants on mitochondrial function. Age 10: 58–61, 1987.

    CAS  Google Scholar 

  178. Pardini, R. S., Heidker, J. C., and Fletcher, D. C.: Inhibition of mitochondrial electron transport by nor-dihydroguaiaretic acid (NDGA). Biochem. Pharmacol., 19: 2695–2699, 1970.

    Article  PubMed  CAS  Google Scholar 

  179. Bandy, B., and Davison, A. J.: Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radical Biol. Med., 8: 523–539, 1990.

    Article  CAS  Google Scholar 

  180. Kohn, R. R.: Effect of antioxidants on life-span of C57BL mice. J. Gerontol., 26: 376–380, 1971.

    Google Scholar 

  181. Cutler, R. G.: Antioxidants, aging and longevity, in Free Radicals in Biology, Vol. 6., edited by Pryor, W. A., New York, Academic Press, 1984, pp. 371–428.

    Google Scholar 

  182. Tappel, A. L., Fletcher, B., and Deamer, D.: Effect of antioxidants and nutrients on lipid peroxidation fluorescent products and aging parameters in the mouse. J. Gerontol. 28: 415–424, 1973.

    PubMed  CAS  Google Scholar 

  183. Blackett, A. D., Hall, D. A.: Tissue vitamin E levels and lipofuscin accumulation with age in the mouse. J. Gerontol. 36: 529–533, 1981.

    PubMed  CAS  Google Scholar 

  184. Lemoyne, M., Van Gossum, A., Kurian, R., Ostro, M., Axler, J., et. al.: Breath pentane analysis as an index of lipid peroxidation: a functional test of vitamin E status. Am. J. Clin. Nutr., 46: 267–272, 1987.

    PubMed  CAS  Google Scholar 

  185. Miquel, J., Fleming, J. and Economos, A. C.: Antioxidants, metabolic rate and aging in Drosophila. Arch. Gerontol. Geriatr., 1: 159–165, 1982.

    Article  PubMed  CAS  Google Scholar 

  186. Carey, J. R., Liedo, P. Orozco, D., and Vaupel, J. W.: Slowing of mortality rates at older ages in large medfly cohorts. Science, 258: 457–463, 1992.

    PubMed  CAS  Google Scholar 

  187. Curtsinger, J. W., Fukui, H. H., Townsend, D. R., and Vaupel, J. W.: Demography of genotypes: failure of the limited life-span paradigm in Drosophila melanogaster. Science, 258: 461–463, 1992.

    PubMed  CAS  Google Scholar 

  188. Wigglesworth, V. B.: The Principles of Insect Physiology, 6th edition, London, Methuen, 1965, pp. 317–368.

    Google Scholar 

  189. Harman, D.: Free radical theory of aging; consequences of mitochondrial aging. Age, 6: 86–94, 1983.

    CAS  Google Scholar 

  190. Harman, D.: Free radical theory of aging. Mutation Res., 275: 257–266, 1992.

    Article  PubMed  CAS  Google Scholar 

  191. Fleming, J. E., Miquel, J., Cottrell, S. F., Yengoyan, L. S., and Economos, A. C.: Is cell aging caused by respiratory-dependent injury to the mitochondrial genome? Gerontology, 28: 44–53, 1982.

    Article  PubMed  CAS  Google Scholar 

  192. Miquel, J., Economos, A. C., Fleming, J., and Johnson, Jr., J. E.: Mitochondrial role in cell aging. Exper. Gerontol., 15: 575–591, 1980.

    Article  CAS  Google Scholar 

  193. Ku, H.-H., Brunk, U. T., and Sohal, R. S.: Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radical Biol. Med., 15: 621–627, 1993.

    Article  CAS  Google Scholar 

  194. Yen, T. C., Chen, Y. S., King, K. L., Yeh, S. H., and Wei, Y. H.: Liver mitochondrial respiratory functions decline with age. Biochem Biophys. Res. Commun., 165: 995–1003, 1989.

    Article  Google Scholar 

  195. Trounce, I., Byrne, E., and Marzuki, S.: Decline in skeletal muscle mitochondrial chain function: possible factor in aging. Lancet 1, 637–639, 1989.

    Article  PubMed  CAS  Google Scholar 

  196. Bowling, A. C., Mutisya, E. M., Walker, L. C., Price, D. L., Cork, L. C., and Beal, M. F.: Age-dependent impairment of mitochondrial function in primates brain. J. Neurochem., 60: 1964–1967, 1993.

    PubMed  CAS  Google Scholar 

  197. Hruszkewycz, A. M.: Evidence for mitochondrial DNA damage by lipid peroxidation. Biochem. Biophys. Res. Commun. 153: 191–197, 1988.

    Article  PubMed  CAS  Google Scholar 

  198. Linnane, A. W., Marzuki, S., Ozawa, T., and Tanaka, M.: Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet, 1: 642–645, 1989.

    Article  PubMed  CAS  Google Scholar 

  199. Mecocci, P., MacGavey, U., Kaufman, A. E., Koontz, D., Shoffner, J. M., Wallace, D. C., and Beal, M. F.: Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann. Neurol., 34: 609–616, 1993.

    Article  PubMed  CAS  Google Scholar 

  200. Wallace, D. C.: Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science, 256: 628–632, 1992.

    PubMed  CAS  Google Scholar 

  201. Cortopassi, G. A., Shibata, D., Soong, N.-W., and Arnheim, N.: A pattern of accumulation of a somatic deletion of mitochondriat DNA in aging human tissues. Proc. Natl. Acad. Sci. USA, 89: 7370–7374, 1992.

    PubMed  CAS  Google Scholar 

  202. Lee, C. M., Chung, S. S., Kaczkowski, J. M., Weindruch, R., and Aiken, J. M.: Multiple mitochondrial DNA deletions associated with age in skeletal muscle of rhesus monkeys. J. Gerontol., 48: B201–B205, 1993.

    PubMed  CAS  Google Scholar 

  203. Hayakawa, M., Sugiyama, S., Hattori, K., Takasawa, M., and Ozawa, T.: Age-associated damage in mitochondrial DNA in human hearts. Mol. Cell. Biochem., 119: 95–103, 1993.

    Article  PubMed  CAS  Google Scholar 

  204. Kristal, B. S., Park, B.-J., and Yu, B. P.: Antioxidants reduce peroxyl-mediated inhibition of mitochondrial transcription. Free Radical Biol. Med., 16: 653–660, 1994.

    Article  CAS  Google Scholar 

  205. Harman, D.: Free radical theory of aging: the “free radical” diseases. Age, 7: 111–131, 1984.

    Article  CAS  Google Scholar 

  206. Rosen, D. R., Siddique, T., Patterson, D.,et. al.: Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362: 59–62, 1993.

    Article  PubMed  CAS  Google Scholar 

  207. Nakazono, K., Watanabe, N., Matsuno, K., Sasaki, J., Sato, T., and Inoue, M.: Does superoxide underlie the pathogenesis of hypertension? Proc. Natl. Acad. Sci. USA, 88: 10045–10049, 1991.

    Google Scholar 

  208. Totter, J. B.: Spontaneous cancer and the possible relationship to oxygen metabolism. Proc. Natl. Acad. Sci. USA, 77: 1763–1767, 1980.

    PubMed  CAS  Google Scholar 

  209. Cerutti, P. A.: Prooxidant states and tumor promotion. Science, 227: 375–381, 1985.

    PubMed  CAS  Google Scholar 

  210. Enstrom, J. E., Kanim, L. E., and Klein, M. A.: Vitamin C intake and mortality among a sample of the United States population. Epidemiol., 3: 194–202, 1992.

    CAS  Google Scholar 

  211. Slater, T. F., and Block, G., editors: Antioxidant vitamins and β-carotene in disease prevention. Amer. J. Clin. Nutr., 53(Suppl. 1): 189S–396S, 1991.

    Google Scholar 

  212. The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group: The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers, New Engl. J. Med., 330: 1029–1035, 1994.

    Article  Google Scholar 

  213. Greenberg, E. R., Baron, J. A., Tosteson, T. D., et. al.: A clinical trial of antioxidant vitamins to prevent colorectal adenoma. New Engl. J. Med., 331: 141–147, 1994.

    Article  PubMed  CAS  Google Scholar 

  214. Harman, D.: Atherosclerosis: a hypothesis concerning initiating steps in pathogenesis. J. Gerontol., 12: 199–202, 1957.

    PubMed  CAS  Google Scholar 

  215. Harman, D.: Atherosclerosis: inhibiting effect of an antihistaminic drug, chlorpheniramine. Circulation Research, 11: 277–282, 1962.

    PubMed  CAS  Google Scholar 

  216. Texon, M.: Hemodynamic basis of atherosclerosis. New York, Hemisphere Publ. Corp., 1980.

    Google Scholar 

  217. Minick, C. R.: Synergy of arterial injury and hypercholesterolemia in atherosclerosis, in Vascular Injury and Atherosclerosis, edited by Moore, S., New York, Marcel Dekker, 1981, pp. 149–173.

    Google Scholar 

  218. Fuster, V., Badimon, L., Badimon, J. J., and Chesebro, J.H.: The pathogenesis of coronary artery disease and the acute coronary syndromes. New Engl. J. Med., 326: 242–250, 1992.

    Article  PubMed  CAS  Google Scholar 

  219. Glagov, S., Zarins, C., Giddens, D. P., and Ku, D. N.: Hemodynamics and atherosclerosis. Arch. Pathol. Lab. Med., 112: 1018–1031, 1988.

    PubMed  CAS  Google Scholar 

  220. Nagano, Y., Nakamura, T., Matsuzawa, Y., Cho, M., Ueda, Y. and Kita, T.: Probucol and atherosclerosis in the Watanabe heritable hyperlipidemic rabbit — long-term antiatherogenic effect and effects on established plaques. Atherosclerosis, 92: 131–140, 1992.

    Article  PubMed  CAS  Google Scholar 

  221. Riemersma, R. A., Wood, D., A., MacIntyre, C. C. A., Elton, R. A., and Gey, K. F.: Risk of angina pectoris and plasma concentrations of vitamin A, C, and E, and carotene. Lancet, 337: 1–5, 1991.

    Article  PubMed  CAS  Google Scholar 

  222. Salonen, J. T., Nyyssonen, K., Korpela, H., Tuomilehto, J., Seppanen, R., and Salonen, R.: High stored iron levels are associated with excess risk of myocardial infarction in Eastern Finnish men. Circulation, 86: 803–811, 1992.

    PubMed  CAS  Google Scholar 

  223. Salonen, J. T., Salonen, R., Korpela, H., Suntioinen, S. and Tuomilehto, J.: Serum copper and the risk of acute myocardial infarction: a prospective population study in men in eastern Finland. Amer. J. Epidemiol., 134: 268–276, 1991.

    CAS  Google Scholar 

  224. Salonen, J. T., Salonen, R., Seppanen, K., Kantola, M., Suntioinen, S., and Korpela, H.: Interactions of serum copper, selenium, and low density lipoprotein cholesterol in atherogenesis. Brit. Med. J., 302: 756–760, 1991.

    PubMed  CAS  Google Scholar 

  225. Stampfer, M. J., Hennekens, C. H., Mason, J. E., Colditz, G. A., Rosner, B., and Willett, W. C.: Vitamin E consumption and the risk of coronary disease in women. N. Engl. J. Med., 328: 1444–1449, 1993.

    Article  PubMed  CAS  Google Scholar 

  226. Rimm, E. B., Stampher, M. J., Ascherio, A., Giovannucci, E., Colditz, G. A., and Willett, W. C.: Vitamin E consumption and the risk of coronary heart disease in men. N. Engl. J. Med., 328: 1450–1456, 1993.

    Article  PubMed  CAS  Google Scholar 

  227. Steinberg, D.: Lipoproteins and atherogenesis: current concepts. JAMA, 264: 3047–3052, 1990.

    Article  PubMed  CAS  Google Scholar 

  228. Manger, W. M., Page, I. M.: An overview of current concepts regarding the pathogenesis and pathophysiology of hypertension, in Arterial Hypertension, edited by Rosenthal, J., New York, Springe-Verlag, 1982, pp.1–48.

    Google Scholar 

  229. Kaplan, N. M: Clinical Hypertension, 2nd edition, Baltimore, Williams & Williams, 1978, p. 7.

    Google Scholar 

  230. Katusic, Z. S., and Vanhoutte, P. M.: Superoxide anion is an endothelium-derived contracting factor. Amer. J. Physiol., 257: H33–H37, 1989.

    PubMed  CAS  Google Scholar 

  231. Selby, J. V., Friedman, G. D., and Quesenberry, Jr., C. P.: Precursors of essential hypertension: pulmonary function, heart rate, uric acid, serum cholesterol, and other serum chemistries. Amer. J. Epidemiol., 131: 1017–1027, 1990.

    CAS  Google Scholar 

  232. Panza, J.A., Quyyumi, A. A., Brush, Jr., J. E., and Epstein S. E.: Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. New Engl. J. Med., 323: 22–27, 1990.

    Article  PubMed  CAS  Google Scholar 

  233. Jarasch, E.-D., Bruder, G., Heid, H. W.: Significance of xanthine oxidase in capillary endothelial cells. Acta Physiol. Scand., 126(Suppl. 548): 39–46, 1986.

    Google Scholar 

  234. Harman, D.: Free radicals and age-related diseases, in Free Radicals in Aging, edited by Yu, B. P., Boca Raton, FL, CRC Press, 1993, pp. 205–222.

    Google Scholar 

  235. Katzman, R.: Alzheimer’s disease. N. Engl. J. Med., 314: 964–973, 1986.

    Article  PubMed  CAS  Google Scholar 

  236. Harman, D.: Free radical theory of aging: a hypothesis on pathogenesis of senile dementia of the Alzheimer’s type. Age, 16: 23–30, 1993.

    Article  Google Scholar 

  237. Shoffner, J. M., and Wallace, D. C.: Oxidative phosphorylation diseases: disorders of two genomes. Adv. Hum. Genet., 19: 267–330, 1990.

    PubMed  CAS  Google Scholar 

  238. Grossman, L. I.: Invited editorial: Mitochondrial DNA in sickness and in health. Amer. J. Hum. Genet., 46: 415–416, 1990.

    PubMed  CAS  Google Scholar 

  239. Shoffner, J. M., and Wallace, D. C.: Heart disease and mitochondrial DNA mutations. Heart Disease and Stroke, 1: 235–241, 1992.

    PubMed  CAS  Google Scholar 

  240. Harding, A. E.: Neurological disease and mitochondrial genes. Trends Neurol. Sci., 14: 132–138, 1993.

    Article  Google Scholar 

  241. Morales, D. T., DiMauro, S., Zeviani, M,m et. al.: Mitochondrial DNA deletions in progressive external ophthalmoplegia and Keams-Sayre syndrome. N. Eng. J. Med., 320: 1293–1299, 1989.

    Article  Google Scholar 

  242. Holt, I. J., Harding, A. E., Cooper, J. M., Schapira, A. H. V., Toscano, A., Clark, J. B., and Morgan-Hughes, J. A.: Mitochondrial myopathics: clinicial and biochemical features of 30 patients with major deletions of muscle mitochondrial DNA. Ann. Neurol., 26: 699–708, 1989.

    Article  PubMed  CAS  Google Scholar 

  243. Dyrks, T., Dyrks, E., Hartmann, T., Masters, C., and Beyreuther, K: Amyloidogenicity of βA4 and βA4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J. Biol. Chem., 267: 18210–18217, 1992.

    Google Scholar 

  244. Strittmatter, W. J., Weisgraber, K. H., Huang, D. Y., Dong, L.-M., Salvesen, G. S., Pericak-Vance, M., Schmechel, D., Saunder, A. M., Goldgaber, D., and Roses, A. D: Binding of human apolipoprotein E to synthetic amyloid β peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA, 90: 8098–8102, 1993.

    PubMed  CAS  Google Scholar 

  245. Vitek, M. P., Bhattacharya, K., Glendening, J. M., Stopa, E., Vlassara, H., Bucala, R. Manogue, K., and Cerami, A Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 91: 4766–4770, 1994.

    PubMed  CAS  Google Scholar 

  246. Smith, M. A., Taneda, S., Richey, P. L., Miyata, S., Yan, S.-D., Stern, D., Sayre, L. M., Monnier, V. M., and Perry, G.: Advanced Maillard reaction end products are asociated with Alzheimer disease pathology. Proc. Natl. Acad. Sci. USA, 91: 5710–5714, 1994.

    PubMed  CAS  Google Scholar 

  247. Harman, D., Eddy, D. E., and Noffsinger, J.: Free radical theory of aging: inhibition of amyloidosis in mice by antioxidants: possible mechanism. J. Amer. Geriatr. Soc., 24: 203–210, 1976.

    CAS  Google Scholar 

  248. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P.C., Small, G. W., Roses, A. D., Haines, J. L., and Pericak-Vance, M. A.: Gene dose of apolipoprotein E-type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261: 921–923, 1993.

    PubMed  CAS  Google Scholar 

  249. Rebeck, G. W., Reiter, J. S., Strickland, D. K., and Hyman, B. T.: Apoliprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron, 11: 575–580, 1993.

    Article  PubMed  CAS  Google Scholar 

  250. Steinmetz, A., Jakobs, C., Motzny, S., and Kaffarnik, H.: Differential distribution of apolipoprotein E isoforms in human plasma lipoproteins. Arteriosclerosis, 9: 405–411, 1989.

    PubMed  CAS  Google Scholar 

  251. Weisgraber, K. H.: Apolipoprotein E distribution among human plasma lipoproteins: role of the cysteine-arginine interchange at residue 112. J. Lipid Res., 31: 1503–1511, 1990.

    PubMed  CAS  Google Scholar 

  252. Harman, D., and Eddy, D. E.: Free radical theory of aging: beneficial effect of adding antioxidants to the maternal mouse diet on life span of offspring: possible explanation of the sex difference in longevity. Age, 2: 109–122, 1979.

    Article  CAS  Google Scholar 

  253. Sullivan, J. L.: Iron and the sex difference in heart disease rate. Lancet, 1: 1293–1294, 1981.

    Article  PubMed  CAS  Google Scholar 

  254. Aruoma, O. I., Bomford, A., Poison, J. J., and Halliewll, B.: Nontransferrin-bound iron in plasma from hemochroamtosis patients: effect of phlebotomy therapy, Blood, 72: 1416–1419, 1988.

    PubMed  CAS  Google Scholar 

  255. Stevens, R. G., Jones, D. Y., Micozzi, M. S., and Taylor, P. R.: Body iron stores and the risk of cancer. New Engl. J. Med., 319: 1047–1052, 1988.

    Article  PubMed  CAS  Google Scholar 

  256. Kay, M. M. B., and Makinodan, T.: Immunobiology of aging: evaluation of current status. Clin. Immunol. Immunopathol., 6: 394–413, 1976.

    Article  PubMed  CAS  Google Scholar 

  257. Harman, D., Heidrick, M. L., and Eddy, D. E.: Free radical theory of aging: effect of free radical reaction inhibitors on the immune response. J. Amer. Geriatr. Soc., 25: 400–407, 1977.

    CAS  Google Scholar 

  258. Harman, D.: Free radical theory of aging: beneficial effect of antioxidants on the life span on male NZBmice; role of free radical reactions in the deterioration of the immune system with age and in the pathogenesis of systemic lupus erythematosus. Age, 3: 64–73, 1980.

    Article  CAS  Google Scholar 

  259. Ohsugi, Y., Nakano, T., Hata, S.-I, Niki, R., Matsuno, T., Nishii, Y., and Takagaki, Y.: N-(2-carboxyphenyl)-4-chloroanthranilic acid disodium salt: prevention of autoimmune kidney disease in NZB/NZW F1 hybrid mice. J. Pharm. Pharmac., 30: 126–128, 1978.

    CAS  Google Scholar 

  260. Harman, D.: Aging: a theory based on free radical and radiation chemistry. Univ. Calif. Rad. Lab. Report No.3078,, July 14, 1955.

  261. Halliwell, B.: Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet, 344: 721–724, 1994.

    Article  PubMed  CAS  Google Scholar 

  262. McCord, J. M., and Fridovich, I.: Superoxide dismutase: an enzymatic function for erythrocuprein (Hemocuprein). J. Biol Chem., 244: 6049–6055, 1969.

    PubMed  CAS  Google Scholar 

  263. Weindruch, R., Warner, H. R., and Starke-Reed, P. E.: Future directons of free radical research in aging, in Free Radicals in Aging, edited by Yu, B. P., Boca Raton, FL, CRC Press, 1993, pp.269–295.

    Google Scholar 

  264. Sohal, R. S.: The free radical hypothesis of aging: an appraisal of the current status. Aging Clin. Exp. Res., 5: 3–17, 1993.

    CAS  Google Scholar 

  265. Sohal, R. S.: The free radical theory of aging: a critique. Rev. Biol. Res. Aging, 3: 431–449, 1987.

    CAS  Google Scholar 

  266. Sohal, R. S., and Allen, R. G.: Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exper. Gerontol., 25: 499–522, 1990.

    Article  CAS  Google Scholar 

  267. Hayflick, L.: Review article: theories of biological aging. Exper. Gerontol., 20: 145–159, 1985.

    Article  CAS  Google Scholar 

  268. Mehlhom, R. J., and Cole, Greg.: The free radical theory of aging: a critical review. Adv. Free Radical Biol. Med., 1: 165–223, 1985.

    Article  Google Scholar 

  269. Cutler, R. G.: Longevity is determlned by specific genes: testing the hypothesis, in Testing the Theories of Aging, edited by Adelman, R. C., amd Roth, G. S., Boca Raton, FL, CRC Press, 1982, pp.25–114.

    Google Scholar 

  270. Schneider, E. L., Guralnik, J. M.: The aging of America: Impact on health care costs. JAMA, 263: 2335–2340, 1990.

    Article  PubMed  CAS  Google Scholar 

  271. Levit, K. R., and Freeland, M. S.: National medical care spending. Health Affairs, 7(No.5): 124–136, 1988.

    Article  PubMed  CAS  Google Scholar 

  272. Willett, W., Sampson, L., Bain, C., Rosner, B., Hennekens, C. H., Witschie, J. and Speizer, F. E.: Vitamin supplement use among registered nurses. Amer. J. Clin. Nutr., 34: 1121–1125, 1981.

    PubMed  CAS  Google Scholar 

  273. Stewart, M. L., McDonald, J. T., Levy, A. S., Schucker, R. E., and Henderson, D. P.: Vitamin/mineral supplement use: a telephone survey of adults in the United States. J. Amer. Diet. Assoc., 85: 1585–1590, 1985.

    CAS  Google Scholar 

  274. Casle, G., Bignamini, M., and de Nicola, P: Does blood dohation prolong life expectancy? Vox Sang, 45: 398–399, 1983.

    Article  Google Scholar 

  275. Editorial: Metal chelation therapy, oxygen radicals, and human disease. Lancet, 1: 143–145, 1985.

  276. Olszewer, E., Sabbag, F. C., and Carter, J. P.: A pilot double-blind study of sodium-magnesium EDTA in peripheral vascular disease. J. Natl. Med. Assoc., 82: 173–177, 1990.

    PubMed  CAS  Google Scholar 

  277. Deucher, G. P.: Antioxidant therapy in the aging process, in Free Radicals and Aging, edited by Emerit, I., and Chance, B., Basel, Switzerland, Birkhauser Verlag, 1992, pp. 428–437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Harman, D. Aging: Prospects for further increases in the functional life span. AGE 17, 119–146 (1994). https://doi.org/10.1007/BF02435819

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02435819

Keywords

Navigation