Skip to main content
Log in

Fourier duality as a quantization principle

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Weyl—Wigner prescription for quantization on Euclidean phase spaces makes essential use of Fourier duality. The extension of this property to more general phase spaces requires the use of Kac algebras, which provide the necessary background for the implementation of Fourier duality on general locally compact groups. Kac algebras—and the duality they incorporate—are consequently examined as candidates for a general quantization framework extending the usual formalism. Using as a test case the simplest nontrivial phase space, the halfplane, it is shown how the structures present in the complete-plane case must be modified. Traces, for example, must be replaced by their noncommutative generalizations—weights—and the correspondence embodied in the Weyl—Wigner formalism is no longer complete. Provided the underlying algebraic structure is suitably adapted to each case, Fourier duality is shown to be indeed a very powerful guide to the quantization of general physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrovandi, R., and Galetti, D. (1990). On the structure of quantum phase space,Journal of Mathematical Physics,31(12), 2987–2995.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Aldrovandi, R., and Saeger, L. A. (1996). Projective Fourier duality and Weyl quantization, to appear inInternat. J. Theor. Phys.

  • Arnold, V. I. (1978).Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Barut, A. O., and Raczka, R. (1977).Theory of Group Representations and Applications, Polish Scientific Publishers, Warsaw.

    Google Scholar 

  • Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and Sternheimer, D. (1978). Deformation theory and quantization, I and II,Annals of Physics,111, 61–110, 111–151.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Bratteli, O., and Robinson, D. W. (1987).Operator Algebras and Quantum Statistical Mechanics 1, 2nd ed., Springer, New York.

    MATH  Google Scholar 

  • Dixmier, J. (1977).C *-Algebras, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Enock, M., and Schwartz, J.-M. (1973).Comptes Rendus de l'Academie des Sciences Paris,277A, 683–685.

    MathSciNet  Google Scholar 

  • Enock, M., and Schwartz, J.-M. (1974a). Une dualité deans les algèbres de von Neumann,Bulletin de la Société Mathématique de France (Mémoire),44, 1–144.

    Google Scholar 

  • Enock, M., and Schwartz, J.-M. (1974b).Comptes Rendus de l'Academie des Sciences Paris,279A, 643–645.

    MathSciNet  Google Scholar 

  • Enock, M., and Schwartz, J.-M. (1992).Kac Algebras and Duality of Locally Compact Groups, Springer, Berlin.

    MATH  Google Scholar 

  • Folland, G. B. (1989).Harmonic Analysis in Phase Space, Princeton University Press, Princeton, New Jersey.

    MATH  Google Scholar 

  • Gurarie, D. (1992).Symmetries and Laplacians, North-Holland, Amsterdam.

    MATH  Google Scholar 

  • Hillery, M., O'Connel, R. F., Scully, M. O., and Wigner, E. P. (1984). Distribution functions in physics: Fundamentals.Physics Reports,106, 121–167.

    Article  MathSciNet  ADS  Google Scholar 

  • Isham, C. J. (1984). Topological and Global aspects of quantum theory, inRelativity, Groups and Topology II, B. S. DeWitt and R. Stora, eds., North-Holland, Amsterdam.

    Google Scholar 

  • Kac, G. I., and Vaînermann, L. I. (1974a). Nonunimodular ring-groups and Hopf-von Neumann algebras.Soviet Mathematics-Doklady,14, 1144–1148.

    Google Scholar 

  • Kac, G. I., and Vaînermann, L. I. (1974b).Mathematics of the USSR-Sbornik,23, 185–214.

    Article  Google Scholar 

  • Kadison, R. V., and Ringrose, J. R. (1986).Fundamentals of the Theory of Operator Algebras, Academic Press, Boston.

    MATH  Google Scholar 

  • Kirillov, A. A. (1976).Elements of the Theory of Representations, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Landsman, N. P. (1993). Deformations of algebras of observables and the classical limit of quantum mechanics,Reviews in Mathematical Physics,5(4), 775–806.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Lee, H.-W. (1995). Theory and application of the quantum phase-space distribution functions,Physics Reports,259, 147–211.

    Article  MathSciNet  Google Scholar 

  • Mackey, G. W. (1957). Borel structure in groups and their duals,Transactions of the American Mathematical Society,85, 134–165.

    Article  MATH  MathSciNet  Google Scholar 

  • Mackey, G. W. (1958). Unitary representations of group extensions, I.Acta Mathematica,99, 265–311.

    Article  MATH  MathSciNet  Google Scholar 

  • Mackey, G. W. (1978).Unitary Group Representations in Physics, Probability and Number Theory, Benjamin/Cummings, Reading, Massachusetts.

    MATH  Google Scholar 

  • Moyal, J. E. (1949). Quantum mechanics as a statistical theory.Proceedings of the Cambridge Philosophical Society,45, 99–124.

    Article  MATH  MathSciNet  Google Scholar 

  • Reiter, H. (1968).Classical Harmonic Analysis and Locally Compact Groups, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Sugiura, M. (1990).Unitary Representations and Harmonic Analysis, North-Holland/Kodansha, Amsterdam.

    MATH  Google Scholar 

  • Takesaki, M. (1971). Duality and von Neumann algebras,Bulletin of the American Mathematical Society,77(4), 553–557.

    Article  MATH  MathSciNet  Google Scholar 

  • Takesaki, M. (1972).Lecture Notes in Mathematics, Vol. 247, Springer, Berlin, pp. 665–785.

    Google Scholar 

  • Taylor, M. E. (1986).Noncommutative Harmonic Analysis, American Mathematical Society, Providence, Rhode Island.

    MATH  Google Scholar 

  • Vaînermann, L. I. (1974). Characterization of objects dual to locally compact groups,Functional Analysis and Its Applications,8, 66–67.

    Article  Google Scholar 

  • Vaînermann, L. I. (1988). Duality of algebras with an involution and generalized shift operators,Journal of Soviet Mathematics,42(6), 2113–2138.

    Article  Google Scholar 

  • Varadarajan, V. S. (1970).Geometry of Quantum Theory, van Nostrand Reinhold, New York, Vol. II.

    MATH  Google Scholar 

  • Weyl, H. (1931).The Theory of Groups and Quantum Mechanics, Dover, New York.

    MATH  Google Scholar 

  • Wigner, E. P. (1932). On the quantum correction for thermodynamic equilibrium,Physical Review,40, 749–759.

    Article  MATH  ADS  Google Scholar 

  • Woronowicz, S. L. (1987). Compact matrix pseudogroups,Communications in Mathematical Physics,111, 613–665.

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aldrovandi, R., Saeger, L.A. Fourier duality as a quantization principle. Int J Theor Phys 36, 345–383 (1997). https://doi.org/10.1007/BF02435738

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02435738

Keywords

Navigation