Skip to main content
Log in

Affine-inscribed and affine-circumscribed polygons and polytopes

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Five theorems on polygons and polytopes inscribed in (or circumscribed about) a convex compact set in the plane or space are proved by topological methods. In particular, it is proved that for every interior point O of a convex compact set in ℝ3, there exists a two-dimensional section through O circumscribed about an affine image of a regular octagon. It is also proved that every compact convex set in ℝ3 (except the cases listed below) is circumscribed about an affine image of a cube-octahedron (the convex hull of the midpoints of the edges of a cube). Possible exceptions are provided by the bodies containing a parallelogram P and contained in a cylinder with directrix P. Bibliography: 29 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Grünbaum,Essays in Combinatorial Geometry and the Theory of Convex Bodies [in Russian], Nauka, Moscow (1971).

    Google Scholar 

  2. J. W. S. Cassels,Introduction to the Geometry of Numbers, Springer-Verlag, Berlin-Göttingen-Heidelberg (1959).

    Google Scholar 

  3. V. Makeev, “Universal covers. 1,”Ukr. Geom. Sb.,24, 70–79 (1981).

    MATH  MathSciNet  Google Scholar 

  4. V. Makeev, “Estimates for asphericity of the sections of convex bodies,”Ukr. Geom. Sb.,28, 76–79 (1985).

    MATH  Google Scholar 

  5. V. Makeev, “On some properties of continuous maps of spheres and problems in combinatorial geometry,” in:Geometric Problems in the Theory of Functions and Sets, Kalinin (1986), pp. 75–85.

  6. V. Makeev, “The degree of mapping in certain problems of combinatorial geometry,”Ukr. Geom. Sb.,30, 62–66 (1987).

    MATH  Google Scholar 

  7. V. Makeev, “The Knaster problem on continuous mappings of a sphere into Euclidean space,”Zap. Nauchn. Semin. LOMI,167, 169–178 (1988).

    MATH  Google Scholar 

  8. V. Makeev, “The Knaster problem and almost-spherical sections,”Mat. Sb.,180, 424–431 (1989).

    MATH  Google Scholar 

  9. V. Makeev, “Polytopes inscribed in and circumscribed about a convex body and related problems,”Mat. Zametki,51, 67–71 (1992).

    MATH  MathSciNet  Google Scholar 

  10. V. Makeev, “Polytopes inscribed in and circumscribed about a convex body. 2,”Mat. Zametki,55, 128–130 (1994).

    MATH  MathSciNet  Google Scholar 

  11. L. Shnirel’man, “On some geometric properties of closed curves,”Usp. Mat. Nauk,10, 39–44 (1944).

    Google Scholar 

  12. I. Yaglom and V. Boltyanskii,Convex Figures [in Russian], Gostekhizdat, Moscow (1951).

    Google Scholar 

  13. A. Besicovitch, “Measure of asymmetry of convex curves,”J. London Math. Soc.,23, 237–240 (1945).

    MathSciNet  Google Scholar 

  14. W. Böhme, “Ein Satz über ebene konvexe Figuren,”Math.-Phys. Semesterber.,6, 153–156 (1958).

    MathSciNet  Google Scholar 

  15. J. Ceder and B. Grünbaum, “On inscribing and circumscribing hexagons,”Colloq. Math.,17, 99–101 (1967).

    MATH  MathSciNet  Google Scholar 

  16. H. Egglston, “Figures inscribed in convex sets,”Am. Math. Monthly,65, 76–80 (1958).

    Article  Google Scholar 

  17. J. Fary, “Sur la densitè des réseaux de domains convexes,”Bull. Soc. Math. France,78, 152–161 (1950).

    MATH  MathSciNet  Google Scholar 

  18. D. Gale, “On inscribingn-dimensional sets in a regularn-simplex,”Proc. Am. Math. Soc.,4, 222–225 (1953).

    Article  MATH  MathSciNet  Google Scholar 

  19. H. Griffiths, “The topology of square pegs in round holes,”Proc. London Math. Soc.,62 647–672 (1991).

    MATH  MathSciNet  Google Scholar 

  20. B. Grünbaum, “Affine-regular polygons inscribed in plane convex sets,”Riveon Lematematika,13, 20–24 (1959).

    MathSciNet  Google Scholar 

  21. H. Hadwiger, D. Larman, and P. Mani, “Hyperrhombs inscribed to convex bodies,”J. Comb. Theory,24, 290–293 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  22. F. John, “An inequality for convex bodies,”Univ. Kentucky Research Club. Bull.,6, 26 (1940).

    MATH  Google Scholar 

  23. S. Kakutani, “A proof that there exists a circumscribing cube around any bounded closed set in ℝ3”,Ann. Math.,43, 739–741 (1942).

    Article  MATH  MathSciNet  Google Scholar 

  24. H. Kramer, “Hyperparallelograms inscribed to convex bodies,”Math. Rev. Anal. Numér. Théor. Approx,22, 67–70 (1980).

    MATH  Google Scholar 

  25. H. Kramer and A. Nemeth, “Equally spaced points for families of compact convex sets in Minkowski spaces,”Mathematica,38, 71–78 (1973).

    MATH  MathSciNet  Google Scholar 

  26. V. Makeev, “Application of topology to some problems in combinatorial geometry,”Am. Math. Soc. Transl. (2),174, 223–228 (1996).

    MATH  MathSciNet  Google Scholar 

  27. J. Nanclars and F. Toranzos, “Inscribing simplexes in convex bodies,”Rev. Unión Mat. Argent.,28, 215–219 (1977-78).

    Google Scholar 

  28. J. Pal, “Über ein elementares Variationsproblem,”Danske Videnskab Selskab. Math. Fys. Meddel,3, 35 (1920).

    MATH  Google Scholar 

  29. H. Yamabe and Z. Yujobo, “The continuous functions defined on a sphere,”Osaka Math. J.,2, 19–22 (1950).

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 231, 1995, pp. 286–298.

Translated by B. M. Bekker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makeev, V.V. Affine-inscribed and affine-circumscribed polygons and polytopes. J Math Sci 91, 3518–3525 (1998). https://doi.org/10.1007/BF02434930

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02434930

Keywords

Navigation