Skip to main content
Log in

Impedance spectroscopy of PEO-lithium triflate confined in nanopores of alumina membranes

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polymeric electrolytes are very useful for their technological applications in different electrochemical devices such as batteries, electrochromic devices, smart windows, etc. One of the most studied solid electrolyte system is PEO (poly-ethylene oxide) complexed with various lithium salts. A limitation of this polymer electrolyte is low ionic conductivity. However, nanoscale manipulation of the solid polymer electrolyte has the potential to address this issue. This work discusses how it is possible to increase the PEO conductivity when this polymer is contained in nanostructures, specifically nanopores. The nanostructures used are alumina filtration membranes (thickness=6 µm, diameter=13 mm) with three different pore sizes 0.02 µm, 0.1 µm and 0.2 µm. Electrochemical characterization has been performed with an HP4194A Impedance/Gain phase analyser and Solartron 1260 Impedance/Gain phase analyser. The former instrument tests these films at a high frequency (from 100 Hz to 40 MHz) while the later at low frequency (from 1 Hz to 1 MHz). From these experiments, it has been determined that two regions of ion conduction exit. One is conduction through the bulk polymer electrolyte in the pores while the other is an interfacial conduction at the interface between the pore walls and the PEO electrolyte. The conductivity of the PEO is increased when confined in these nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.H. Heckner and A. Kraft, Solid State Ionics152–153, 899 (2002).

    Article  Google Scholar 

  2. P.G. Bruce, Elctrochimica Acta40, 2077 (1995).

    Article  CAS  Google Scholar 

  3. M. Le Granvalet-Mancini, L. Honeycutt and D. Teeters, Elctrochimica Acta45, 1491 (2000).

    Article  Google Scholar 

  4. M. Le Granvalet-Mancini, T. Hanrath. and D. Teeters, Solid state Ionics135, 283 (2000).

    Article  Google Scholar 

  5. J. Kim, M.K. Park, J.Y. Bae and J.H. Ahn, Electrochemistry Communicatios3, 643 (2001).

    Article  CAS  Google Scholar 

  6. R.N. Mason, M. Smith, T. Andrews and D. Teeters, Solid State Ionics118, 129 (1999).

    Article  CAS  Google Scholar 

  7. I. Nicotera, G.A. Ranieri, M. Terenzi, A.V. Chadwick and M.I. Webmaster, Solid State Ionics146, 143 (2002).

    Article  CAS  Google Scholar 

  8. E. Cazzanelli, G. Mariotto, G.B. Appetecchi, F. Croce and B. Scrosati, Elctrochimica Acta40, 2379 (1995).

    Article  CAS  Google Scholar 

  9. I. Nicotera, C. Olivierio, G.A. Ranieri, A. Spadafora, M. Castriota and E. Cazzanelli, J. Chem. Phys.117, 7373 (2002).

    Article  CAS  Google Scholar 

  10. I. Nicotera, L. Coppola, C. Oliviero, A. Russo and G.A. Ranieri, Solid State Ionics167, 213 (2004).

    Article  CAS  Google Scholar 

  11. Y. Ward and Y. Mi, Polymer40, 2465 (1999).

    Article  CAS  Google Scholar 

  12. H. Sasaki, P.K. Bala, H. Yoshida and E. Ito, Polymer36, 4805 (1995).

    CAS  Google Scholar 

  13. E. Cazzanelli, F. Croce, G.B. Appetecchi, F. Benevelli and P. Mustarelli, J. Chem. Phys.107, 5740 (1997).

    Article  CAS  Google Scholar 

  14. M. Castriota, E. Cazzanelli, I. Nicotera, L. Coppola, C. Oliverio and G.A. Ranieri, J. Chem. Phys.118, 5537 (2003).

    Article  CAS  Google Scholar 

  15. J.H. Shin, W.A. Henderson and S. Passerini, Electrochemical and Solid-State Letters8, A125 (2005).

  16. M. Castriota, T. Caruso, R.G. Agostino, E. Cazzanelli, W.A. Henderson and S. Passerini, J. Phys. Chem. A109, 92 (2005).

    Article  CAS  Google Scholar 

  17. F. Croce, G.B. Appetecchi, L. Persi and B. Scrosati, Nature394, 456 (1998).

    Article  CAS  Google Scholar 

  18. F. Croce, B. Scrosati and G. Mariotto, Chem. Mater.4, 1134 (1992).

    Article  CAS  Google Scholar 

  19. Z. Wen, T. Itoh, M. Ikeda, N. Hirata, M. Kubo and O. Yamamoto, J. Power Sources90, 20 (2000).

    Article  CAS  Google Scholar 

  20. S. Vorrey and D. Teeters, Electrochimica Acta48, 2137 (2003).

    Article  CAS  Google Scholar 

  21. A.R. Layson and D. Teeters, Solid State Ionics175, 773 (2004).

    Article  CAS  Google Scholar 

  22. Y. Fang and J. Leddy, J. Phys. Chem.99, 553 (1995).

    Google Scholar 

  23. H. Masuda, K. Nishio and N. Baba, Thin Solids Films223, 1 (1993).

    Article  Google Scholar 

  24. H. Masuda and K. Fukuda, Science268, 1466 (1995).

    CAS  Google Scholar 

  25. A.-P. Li, F. Muller, A. Birner, K. Neilsch, and U. Gosele, Adv. Mater.11, 483 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Invited Scholar Research from: LiCryl — INFM (Liquid Crystal Regional Laboratory) c/o Department of Physics, University of Calabria, Via P. Bucci Cubo 31C, I-87036 Rende (CS) Italy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castriota, M., Teeters, D. Impedance spectroscopy of PEO-lithium triflate confined in nanopores of alumina membranes. Ionics 11, 220–225 (2005). https://doi.org/10.1007/BF02430380

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02430380

Keywords

Navigation