Skip to main content
Log in

Behavioral phenodeviance: A Lerneresque conjecture

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Developmental instability, detectable in morphological and meristic characters, is typically associated with reduced fitness. The actual mechanism by which fitness is reduced in these cases is difficult to identify. We propose that developmental instability also manifests itself at the behavioral level and that when this occurs, behavioral phenodeviance is the result. According to this model, abnormal or phenodeviant behavior compromises fitness. Examples are provided fromDrosophila and man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baird, P. A. & B. McGillivray, 1982. Children of incest. J. of Pediatrics 101: 854–857.

    Article  CAS  Google Scholar 

  • Brittnacher, J. G., 1981. Genetic variation and genetic load due to the male reproductive component of fitness inDrosophila. Genetics 97: 719–730.

    CAS  PubMed  Google Scholar 

  • Costeff, H., B. E. Cohen, L. Weller & D. Rahman, 1977. Consanguinity analysis in Israeli mental retardates. Amer. J. Hum. Genet. 29: 339–349.

    CAS  PubMed  Google Scholar 

  • Clarke, G. M. & J. A. McKenzie, 1992. Coadaptation, developmental stability and fitness of insecticide resistance genotypes in the Australian sheep blowfly,Lucilia cuprina: A review. Acta Zoologica Fennica 191: 107–110.

    Google Scholar 

  • Durfee, K. E., 1974. Crooked cars and the bad boy syndrome: Asymmetry as an indicator of minimal brain dysfunction. Bulletin of the Menninger Clinic 38: 305–316.

    CAS  PubMed  Google Scholar 

  • Edwards, J. H., 1960. The simulation of mendelism. Act. Genet. Stat. Med. 10: 63–70.

    CAS  Google Scholar 

  • Falconer, D. S., 1989. Introduction to Quantitative Genetics. Longman, England.

    Google Scholar 

  • Gottesman, I. I. & J. Shields, 1967. A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences of the United States of America 58: 199–205.

    CAS  PubMed  Google Scholar 

  • Gottesman, I. I., 1991. Schizophrenia Genesis-the origins of madness. W. H. Freeman, New York.

    Google Scholar 

  • Hartl, B., G. Lang, F. Klein & R. Willing, 1991. Relationships between allozymes, heterozygosity and morphological characters in red deer (Cerves elaphus), and the influence of selective hunting on allele frequency distributions. Heredity 66: 343–350.

    PubMed  Google Scholar 

  • Haverkamp, F., P. Propping & T. Hilger, 1982. Is there an increase in reproductive rates in schizophrenics? I. Critical review of the literature. Archives of Psychiatry and Neurological Sciences 232: 439–450.

    Article  CAS  PubMed  Google Scholar 

  • Hilger, T., P. Propping & F. Haverkamp, 1983. Is there an increase in reproductive rates in schizoprhenics? III. An investigation in Nordbaden (SW Germany). Archives of Psychiatry and Neurological Sciences 233: 177–186.

    Article  CAS  PubMed  Google Scholar 

  • Katz, R. & P. McGuffin, 1993. The genetics of affective disorders. Progress in Experimental Personality & Psychopathology Research 16: 200–221.

    CAS  Google Scholar 

  • Leary, R. F., F. W. Allendorf & K. L. Knudsen, 1984. Superior developmental stability of heterozygotes at enzyme loci in salmonid fishes. The American Naturalist 124: 540–551.

    Article  Google Scholar 

  • Lerner, I. M., 1954. Genetic Homeostasis. John Wiley & Sons, New York.

    Google Scholar 

  • Lerner, I. M., 1958. The Genetic Basis of Selection. John Wiley and Sons, New York.

    Google Scholar 

  • Malina, R. M. & P. H. Buschang, 1984. Anthropomorphic asymmetry in normal and mentally retarded males. Annals of Human Biology 11: 515–553.

    Article  CAS  PubMed  Google Scholar 

  • Markow, T. A., 1985. A comparative investigation of the mating system ofDrosophila hydei. Animal Behavior 33: 775–781.

    Article  Google Scholar 

  • Markow, T. A. & K. Wandler, 1986. Fluctuating dermatoglyphic asymmetry and the genetics of liability to schizophrenia. Psychiatry Research 19: 323–328.

    Article  CAS  PubMed  Google Scholar 

  • Markow, T. A., 1987a. Genetics of Sexual Selection inDrosophila in M. Huettl, ed, Genetics of Invertebrate Behavior. Plenum Press, NY.

    Google Scholar 

  • Markow, T. A., 1987b. Behavioral and sensory basis of courtship success inDrosophila. Proc. Natl. Acad. Sci. 84: 6200–6205.

    CAS  PubMed  Google Scholar 

  • Markow, T. A., 1988. Reproductive behavior ofDrosophila in the laboratory and in the field. Journal of Comparative Psychology 102: 169–174.

    Article  CAS  PubMed  Google Scholar 

  • Markow, T. A. & I. I. Gottesman, 1989. Dermatoglyphic fluctuating asymmetry in psychotic twins. Psychiatry Research 29: 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Markow, T. A. & J. P. Ricker, 1992. Male size, developmental stability, and mating success in natural populations of threeDrosophila species. Heredity 69: 122–127.

    PubMed  Google Scholar 

  • Markow, T. A., 1992. Human handedness and the concept of development stability. Genetica 87: 87–94.

    Article  CAS  PubMed  Google Scholar 

  • Markow, T. A. & S. Sawka, 1992. Dynamics of male mating success in experimental groups ofDrosophila. Journal of Insect Behavior 5: 375–383.

    Article  Google Scholar 

  • McGue, M. & I. I. Gottesman, 1989. Genetic linkage in schizophrenia: perspectives from genetic epidemiology. Schiz. Bull. 15: 281–292.

    Google Scholar 

  • McGuffin, P. & R. Murray, (Eds.), 1991. The New Genetics of Mental Illness. Butterworth-Heinemann, Oxford.

    Google Scholar 

  • McGuffin, P., M. Owen & M. Gill, 1992. Molecular genetics of schizophrenia, pp. 25–48 in Genetic Research in Psychiatry, edited by J. Mendlewicz and H. Hippius. Springer Verlag, Berlin.

    Google Scholar 

  • Mellor, C. S., 1992. Dermatoglyphic evidence of fluctuating asymmetry in schizophrenia. British Journal of Psychiatry 160: 467–472.

    Article  CAS  PubMed  Google Scholar 

  • Miller, P., J. Glasner & P. Hedrick, 1992. Inbreeding depression and male mating behavior inDrosophila melanogaster. Genetica, in press.

  • Moller, A. P., 1992. Females prefer large and symmetrical ornaments. Nature, Lond. 357: 238–240.

    Article  CAS  Google Scholar 

  • Odegaard, O., 1960. Marriage rate and fertility in psychotic patients before admissions and after discharge. International J. of Social Psychiatry 6: 25–33.

    Google Scholar 

  • Partridge, L., T. F. C. MacKay & S. Aitken, 1985. Male mating success and fertility inDrosophila melanogaster. Genet. Res., Camb. 46: 279–285.

    Google Scholar 

  • Partridge, L., A. Hoffman & Jones, 1987. Male size and mating success inDrosophila melanogaster andDrosophila pseudoobscura under field conditions. Animal Behavior 35: 468–476.

    Article  Google Scholar 

  • Partridge, L., A. Ewing & A. Chandler, 1987. Male size and mating success inDrosophila melanogaster: the roles of male and female courtship. Animal Behavior 35: 555–562.

    Article  Google Scholar 

  • Patterson, B. D. & J. L. Patton, 1990. Fluctuating asymmetry and allozymic heterozygosity among natural populations of pocket gophers (Thomomys bottae). Biological Journal of the Linnean Society 40: 21–36.

    Google Scholar 

  • Saugstad, L. F. & O. Odegaard, 1987. Inbreeding and the epidemiology of schizophrenia, pp. 466–473 in Human Genetics, edited by F. Vogel and K. Sperling. Springer-Verlag, Berlin.

    Google Scholar 

  • Seemanova, E., 1971. A study of children of incestuous matings. Human Heredity 21: 108–128.

    Article  CAS  PubMed  Google Scholar 

  • Sharp, P. M., 1984. The effect of inbreeding on competitive male-mating ability inDrosophila melanogaster. Genetics 106: 601–612.

    PubMed  Google Scholar 

  • Slater, E., E. H. Hare & J. S. Price, 1971. Marriage and fertility of psychiatric patients compared with national data. Social Biology (Supplement) 18: s60-s73.

    CAS  Google Scholar 

  • Thornhill, R., 1992. Fluctuating asymmetry and the mating system of the Japanese scorpionfly,Panorpa japonica. Animal Behavior 44: 867–879.

    Article  Google Scholar 

  • Waddington, C. H., 1957. The Strategy of the Genes. Macmillan, New York.

    Google Scholar 

  • Waldrop, M. & C. Halvorson, 1971. Minor physical anomalies: Their incidence and relation to behavior in a normal and deviant sample, in Readings in Development and Relationships, edited by R. Smart, Jr. and M. Smart. Macmillan, New York.

    Google Scholar 

  • Woolf, C. M. & A. Gianas, 1976. Congenital cleft lip and fluctuating dermatoglyphic asymmetry. American Journal of Human Genetics 28: 400–403.

    CAS  PubMed  Google Scholar 

  • Zakharov, V. M., 1987. Animal asymmetry: Population-phenogenetic approach. (in Russian) — Nauka, Moscow.

    Google Scholar 

  • Zakharov, V. M., 1992. Population phenogenetics: Analysis of developmental stability in natural populations. Acta Zoologica Fennica 191: 7–30.

    Google Scholar 

  • Zink, R. M., M. F. Smith & J. L. Patton, 1985. Associations between heterozygosity and morphological variance. Journal of Heredity 76: 415–420.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markow, T.A., Gottesman, I.I. Behavioral phenodeviance: A Lerneresque conjecture. Genetica 89, 297–305 (1993). https://doi.org/10.1007/BF02424522

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02424522

Keywords

Navigation