Skip to main content
Log in

λ-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization

  • Published:
Planta Aims and scope Submit manuscript

Abstract

λ-Glutamylcysteine synthetase activity (EC 6.3.2.2) was analysed in Sephacryl S-200 eluents of extracts from cell suspension cultures ofNicotiana tabacum L. cv. Samsun by determination of λ-glutamylcysteine as its monobromobimane derivative. The enzyme has a relative molecular mass (Mr) of 60000 and exhibits maximal activity at pH 8 (50% at pH 7.0 and pH9.0) and an absolute requirement for Mg2+. With 0.2mM Cd2+ or Zn2+, enzyme activity was reduced by 35% and 19%, respectively. Treatment with 5 mM dithioerythritol led to a heavy loss of activity and to dissociation into subunits (Mr 34000). Buthionine sulfoximine andl-methionine-sulfoximine, known as potent inhibitors of λ-glutamylcysteine synthetase from mammalian cells, were found to be effective inhibitors of the plant enzyme too. The apparent Km values forl-glutamate,l-cysteine, and α-aminobutyrate were, respectively, 10.4mM, 0.19 mM, and 6.36 mM. The enzyme was completely inhibited by glutathione (Ki=0.42 mM). The data indicate that the rate of glutathione synthesis in vivo may be influenced substantially by the concentration of cysteine and glutamate and may be further regulated by feedback inhibition of λ-glutamylcysteine synthetase by glutathione itself. λ-Glutamylcysteine synthetase is, like glutathione synthetase, localized in chloroplasts as well as in the cytoplasm. Chloroplasts fromPisum sativum L. isolated on a Percoll gradient contained about 72% of the λ-glutamylcysteine synthetase activity in leaf cells and 48% of the total glutathione synthetase activity. In chloroplasts ofSpinacia oleracea L. about 61% of the total λ-glutamylcysteine synthetase activity of the cells were found and 58% of the total glutathione synthetase activity. These results indicate that glutathione synthesis can take place in at least two compartments of the plant cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTE:

dithioerythritol

λ-GC:

λ-glutamylcysteine

GSH:

glutathione

Hepes:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

References

  • Aach, H.G., Heber, U. (1967) Compartimentation of amino acids in plant leaf cells. Z Pflanzenphysiol.57, 317–328

    CAS  Google Scholar 

  • Apontoweil, P., Berends, W. (1975) Glutathione biosynthesis inEscherichia coli K12. Properties of the enzymes and regulation. Biochim. Biophys. Acta399, 1–9

    CAS  PubMed  Google Scholar 

  • Bergmann, L. (1960) Growth and division of single cells of higher plants in vitro. J. Gen. Physiol.43, 841–851

    Article  CAS  PubMed  Google Scholar 

  • Bergmann, L., Rennenberg, H. (1978) Efflux and production of glutathione in suspension cultures ofNicotiana tabacum. Z. Pflanzenphysiol88, 175–185

    CAS  Google Scholar 

  • Bergmeyer, H.U. (1974) Methoden der enzymatischen Analyse. Bergmeyer, H. U., ed. Verlag Chemie, Weinheim, FRG

    Google Scholar 

  • Bielawski, W., Joy, K.W. (1986) Reduced and oxidised glutathione and glutathione-reductase activity in tissues ofPisum sativum. Planta169, 267–272

    Article  CAS  Google Scholar 

  • Boller, T., Kende, H. (1979) Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol.63, 1123–1132

    CAS  PubMed  Google Scholar 

  • Chapman, D.J., Leech, R.M. (1979) Changes in pool sizes of free amino acids and amides in leaves and plastids ofZea mays during leaf development. Plant Physiol.63, 567–572

    CAS  PubMed  Google Scholar 

  • Dennda, G., Kula, M.-R. (1986) Purification and evaluation of the glutathione-synthesizing enzymes fromCandida boidinii for cell-free synthesis of glutathione. J. Biotechnol.4, 143–158

    Article  CAS  Google Scholar 

  • Foyer, C.H., Halliwell, B. (1976) The presence of glutathione and glutathione reductase in chloroplasts. Planta133, 21–25

    Article  Google Scholar 

  • Gillham, D.J., Dodge, A.D. (1986) Hydrogen-peroxide-scavenging systems within pea chloroplasts. Planta167, 246–251

    Article  CAS  Google Scholar 

  • Griffith, O.W., Meister, A. (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine. J. Biol. Chem.254, 7558–7560

    CAS  PubMed  Google Scholar 

  • Grill, E., Winnacker, E.L., Zenk, M.H. (1989) Phytochelatins, the heavy-metal chelating peptides of the plant kingdom. In: Sulfur nutrition and assimilation in higher plants. Rennenberg, H., Brunold, C., de Kok, L., Stulen, I., eds. SPB Publisher, The Hague (in press)

    Google Scholar 

  • Heldt, H.W. (1979) Light-dependent changes of stromal H+ and Mg2+ concentrations controlling CO2 fixation. In: Encyclopedia of plant physiology, vol. 6, pp. 202–207 Gibbs, M., Latzko, E., eds., Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hell, R., Bergmann, L. (1988) Glutathione synthetase in tobacco suspension cultures: catalytic properties and localization. Physiol. Plant.72, 70–76

    Article  CAS  Google Scholar 

  • Hodges, T.K., Leonard, R.T. (1974) Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. Methods Enzymol.32, 392–406

    CAS  PubMed  Google Scholar 

  • Inatomi, K., Slaughter, J.C. (1975) Glutamate decarboxylase from barley embryos and roots. Biochem. J.147, 479–484

    CAS  PubMed  Google Scholar 

  • Jackson, R.C. (1969) Studies in the enzymology of glutathione metabolism in human erythrocytes. Biochem. J.111, 309–315

    CAS  PubMed  Google Scholar 

  • Jackson, C., Dench, J.E., Hall, D.O., Moore, A.L. (1979) Separation of mitochondria from contaminating subcellular structures utilizing silica sol gradient centrifugation. Plant Physiol.64, 150–153

    Article  CAS  PubMed  Google Scholar 

  • Joy, K.W., Mills, W.R. (1987) Purification of chloroplasts using silica sols. Methods Enzymol.148, 179–188

    CAS  Google Scholar 

  • Kirk, P.R., Leech, R.M. (1972) Amino acid biosynthesis by isolated chloroplasts during photosynthesis. Plant Physiol.50, 228–234

    CAS  PubMed  Google Scholar 

  • Klapheck, S., Zimmer, I. (1989) Scavenging of hydrogen peroxide in the endosperm ofRicinus communis by ascorbate peroxidase and catalase. Planta (in press)

  • Klapheck, S., Latus, C., Bergmann, L. (1987) Localization of glutathione synthetase and distribution of glutathione in leaf cells ofPisum sativum L. J. Plant Physiol.131, 123–131

    CAS  Google Scholar 

  • Klapheck, S., Zopes, H., Levels, H.-G., Bergmann, L. (1988) Properties and localization of the homoglutathione synthetase fromPhaseolus coccineus. Physiol. Plant.74, 733–739

    Article  CAS  Google Scholar 

  • Koike, S., Patterson, B.D. (1988) Diurnal variation of glutathione levels in tomato seedlings. Hort. Sci.23, 713–714

    CAS  Google Scholar 

  • Lancaster, J.E., Reynolds, P.H.S., Shaw, M.O., Domisse, E.M., Munro, J. (1989) Intracellular localization of the biosynthetic pathway to flavour precursors in onion. Phytochemistry28, 461–464

    Article  CAS  Google Scholar 

  • Law, M.Y., Halliwell, B. (1986) Purification and properties of glutathione synthetase from spinach (Spinacia oleracea) leaves. Plant Sci.43, 185–191

    Article  CAS  Google Scholar 

  • Law, M.Y., Charles, S.A., Halliwell, B. (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. Biochem. J.210, 899–903

    CAS  PubMed  Google Scholar 

  • Lenda, K., Svenneby, G. (1980) Rapid high-performance liquid chromatographic determination of amino acids in synaptosomal extracts. J. Chromatogr.198, 516–519

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler, H.K., Wellburn, A.R. (1983) Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans.603, 591–592

    Google Scholar 

  • Lilley, R.M., Fitzgerald, M.P., Rienits, K.G., Walker, D.A. (1975) Criteria of intactness and the photosynthetic activity of spinach chloroplast preparations. New Phytol.75, 1–10

    Article  CAS  Google Scholar 

  • Macnicol, P.K. (1987) Homoglutathione and glutathione synthetase of legume seedlings: partial purification and substrate specificity. Plant Sci.53, 229–235

    Article  CAS  Google Scholar 

  • Meister, A. (1985) Glutathione synthetase from rat kidney. Methods Enzymol.113, 393–399

    CAS  PubMed  Google Scholar 

  • Meister, A., Anderson, M.E. (1983) Glutathione. Annu. Rev. Biochem.52, 711–760

    Article  CAS  PubMed  Google Scholar 

  • Mills, W.R., Joy, K.W. (1980) A rapid method-for isolation of purified, physiologically active chloroplasts, used to study the intracellular distribution of amino acids in pea leaves. Planta148, 75–83

    Article  CAS  Google Scholar 

  • Newton, G., Dorian, R., Fahey, C. (1981) Analysis of biological thiols: Derivatisation with monobromobimane and separation by reverse-phase HPLC. Anal. Biochem.114, 383–387

    Article  CAS  PubMed  Google Scholar 

  • Orlowski, M., Meister, A. (1971) Partial reactions catalyzed by λ-glutamylcysteine synthetase and evidence for an activated glutamate intermediate. J. Biol. Chem.246, 7095–7105

    CAS  PubMed  Google Scholar 

  • Papen, H., Kentemich, T., Schmülling, T., Bothe, H. (1986) Hydrogenase activities in cyanobacteria. Biochimie68, 121–132

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg, H. (1982) Glutathione metabolism and possible biological roles in higher plants. Phytochemistry21, 2771–2781

    Article  CAS  Google Scholar 

  • Richman, P.G., Meister, A. (1975) Regulation of λ-glutamylcysteine synthetase by nonallosteric feed back inhibition by glutathione. J. Biol. Chem.250, 1422–1426

    CAS  PubMed  Google Scholar 

  • Richman, P.G., Orlowski, M., Meister, A. (1973) Inhibition of λ-glutamylcysteine synthetase byl-methionine-S-sulfoximine. J. Biol. Chem.248, 6684–6690

    CAS  PubMed  Google Scholar 

  • Scheller, H.V., Huang, Bin, Hatch, E., Goldsbrough, P.B. (1987) Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiol.85, 1031–1035

    CAS  PubMed  Google Scholar 

  • Schmutz, D., Brunold, C. (1989) Effects of cadmium, copper and zinc on assimilatory sulfate reduction in pea roots. In: Sulfur nutrition and assimilation in higher plants, Rennenberg, H., Brunold, C., de Kok, L., Stulen, I., eds. SPB Publisher, The Hague (in press)

    Google Scholar 

  • Schupp, R., Rennenberg, H. (1988) Diurnal changes in the glutathione content of spruce needles (Picea abies L.) Plant Sci.57, 113–117

    Article  CAS  Google Scholar 

  • Seelig, G.F., Meister, A. (1985) λ-Glutamylcysteine synthetase from erythrocytes. Methods Enzymol.,113 390–392

    Article  CAS  PubMed  Google Scholar 

  • Seelig, G.F., Simondsen, R.P., Meister, A. (1984) Reversible dissociation of λ-glutamylcysteine synthetase in two subunits. J. Biol. Chem.259, 9345–9347

    CAS  PubMed  Google Scholar 

  • Sekura, R., Meister, A. (1977) λ-Glutamylcysteine synthetase. J. Biol. Chem.252, 2599–2605

    CAS  PubMed  Google Scholar 

  • Shigeoka, S., Onishi, T., Nakano, Y., Kitaoka, S. (1987) Photoinduced biosynthesis of glutathione inEuglena gracilis. Agric. Biol. Chem.51, 2257–2259

    CAS  Google Scholar 

  • Smith, I.K., Kendall, A.C., Keys, A.J., Turner, J.C., Lea, P.I. (1985) The regulation of the biosynthesis of glutathione in leaves of barley (Hordeum vulgare L.) Plant Sci.41, 11–17

    Article  CAS  Google Scholar 

  • Steffens, J.C., Williams, B. (1987) Increased activity of λ-glutamylcysteine synthetase in cadmium resistent tomato cells. (Abstr.) Plant Physiol.83, Suppl., 666

    Google Scholar 

  • Steward, G.R., Mann, A.F., Fentem, P.A. (1980) Enzymes of glutamate formation: Glutamate dehydrogenase, glutamine synthetase, and glutamate synthase. In: Biochemistry of plants, vol. 5, pp. 271–327, Miflin, B.J., ed. Academic Press, London

    Google Scholar 

  • Webster, G.C., Varner, J.E. (1954) Peptide-bond synthesis in higher plants II. Studies on the mechanism of synthesis of λ-glutamylcysteine. Arch. Biochem. Biophys.52, 22–32

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor A. Prison on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hell, R., Bergmann, L. λ-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization. Planta 180, 603–612 (1990). https://doi.org/10.1007/BF02411460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02411460

Key words

Navigation