Skip to main content
Log in

Abstract

Bacteria have adapted to the introduction of aztreonam, cefotaxime, ceftazidime, ceftriaxone and other oxyimino-β-lactams by altering existing plasmid-mediated class A and class D β-lactamases so as to expand their spectrum of activity. In the TEM and SHV families of extended-spectrum β-lactamases, relative activity toward oxyimino-substrates increases with the number of amino acid substitutions but at the price of lowered intrinsic efficiency, so that compensatory up-promoter events are often associated with increased enzyme expression. Another new mechanism of resistance is the capture on plasmids of normally chromosomal genes fromEnterobacter cloacae, Citrobacter freundii orPseudomonas aeruginosa, which upon transfer can provideKlebsiella pneumoniae orEscherichia coli with resistance to α-methoxy-β-lactams, such as cefoxitin or cefotetan, as well as to oxyimino-β-lactams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Philippon A, Labia R, Jacoby G: Extended-spectrum β-lactamases. Antimicrobial Agents and Chemotherapy 1989, 33: 1131–1136.

    CAS  PubMed  Google Scholar 

  2. Payne DJ, Amyes SGB: Transferable resistance to extended-spectrum β-lactams: a major threat or a minor inconvenience? Journal of Antimicrobial Chemotherapy 1991, 27: 255–261.

    CAS  PubMed  Google Scholar 

  3. Jacoby GA, Medeiros AA: More extended-spectrum β-lactamases. Antimicrobial Agents and Chemotherapy 1991, 35: 1697–1704.

    CAS  PubMed  Google Scholar 

  4. Hall LMC, Livermore DM, Gur D, Akova M, Akalin HE: OXA-11, an extended-spectrum variant of OXA-10 (PSE-2) β-lactamase fromPseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1993, 37: 1637–1644.

    CAS  PubMed  Google Scholar 

  5. Watanabe M, Iyobe S, Inoue M, Mitsuhashi S: Transferable imipenem resistance inPseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1991, 35: 147–151.

    CAS  PubMed  Google Scholar 

  6. Webber DA, Sanders CC, Bakken JS, Quinn JP: A novel chromosomal TEM derivative and alterations in outer membrane proteins together mediate selective ceftazidime resistance inEscherichia coli. Journal of Infectious Diseases 1990, 162: 460–465.

    Google Scholar 

  7. Sutcliffe JG: Nucleotide sequence of the ampicillin resistance gene ofEscherichia coli plasmid pBR322. Proceedings of the National Academy of Sciences of the USA 1978, 75: 3737–3741.

    CAS  PubMed  Google Scholar 

  8. Bush K, Singer SB: Biochemical characteristics of extended broad spectrum β-lactamases. Infection 1989, 17: 429–433.

    Article  CAS  PubMed  Google Scholar 

  9. Barthélémy M, Péduzzi J, Ben Yaghlane H, Labia R: Single amino acid substitution between SHV-1 β-lactamase and cefotaxime-hydrolyzing SHV-2 enzyme. FEBS Letters 1988, 231: 217–220.

    Article  PubMed  Google Scholar 

  10. Mabilat C, Courvalin P: Development of “oligotyping” for characterization and molecular epidemiology of TEM β-lactamases in members of the family Enterobacteriaceae. Antimicrobial Agents and Chemotherapy 1990, 34: 2210–2216.

    CAS  PubMed  Google Scholar 

  11. Collatz E, Tran Van Nhieu G, Billot-Klein D, Williamson R, Gutmann L: Substitution of serine for arginine in position 162 of TEM-type β-lactamases extends the substrate profile of mutant enzymes, TEM-7 and TEM-101, to ceftazidime and aztreonam. Gene 1989, 78: 349–354.

    Article  CAS  PubMed  Google Scholar 

  12. Vuye A, Verschraegen G, Claeys G: Plasmid-mediated β-lactamases in clinical isolates ofKlebsiella pneumoniae andEscherichia coli resistant to ceftazidime. Antimicrobial Agents and Chemotherapy 1989, 33: 757–761.

    CAS  PubMed  Google Scholar 

  13. Rice LB, Marshall SH, Carias LL, Sutton L, Jacoby GA: Sequences of MGH-1, YOU-1, and YOU-2 extended-spectrum β-lactamase genes. Antimicrobial Agents and Chemotherapy 1993, 37: 2760–2761.

    CAS  PubMed  Google Scholar 

  14. Barthélémy M, Péduzzi J, Labia R: Distinction entre les structures primaires des β-lactamases TEM-1 et TEM-2. Annales de l'Institute Pasteur/Microbiologie 1985, 136A: 311–321.

    Google Scholar 

  15. Paul GC, Gerbaud G, Buré A, Philippon AM, Pangon B, Courvalin P: TEM-4, a new plasmid-mediated β-lactamase that hydrolyzes broad-spectrum cephalosporins in a clinical isolate ofEscherichia coli. Antimicrobial Agents and Chemotherapy 1989, 33: 1958–1963.

    CAS  PubMed  Google Scholar 

  16. Rasmussen BA, Bradford PA, Quinn JP, Wiener J, Weinstein SA, Bush K: Genetically diverse ceftazidime-resistant isolates from a single center: biochemical and genetic characterization of TEM-10 β-lactamases encoded by different nucleotide sequences. Antimicrobial Agents and Chemotherapy 1993, 37: 1989–1992.

    CAS  PubMed  Google Scholar 

  17. Chanal CM, Sirot DL, Petit A, Labia R, Morand A, Sirot JL, Cluzel RA: Multiplicity of TEM-derived β-lactamases fromKlebsiella pneumoniae strains isolated at the same hospital and relationships between the responsible plasmids. Antimicrobial Agents and Chemotherapy 1989, 33: 1915–1920.

    CAS  PubMed  Google Scholar 

  18. Chanal C, Poupart M-C, Sirot D, Labia R, Sirot J, Cluzel R: Nucleotide sequences of CAZ-2, CAZ-6, and CAZ-7 β-lactamase genes. Antimicrobial Agents and Chemotherapy 1992, 36: 1817–1820.

    CAS  PubMed  Google Scholar 

  19. Naumovski L, Quinn JP, Miyahsiro D, Patel M, Bush K, Singer SB, Graves D, Palzkill T, Arvin AM: Outbreak of ceftazidime resistance due to a novel extended-spectrum β-lactamase in isolates from cancer patients. Antimicrobial Agents and Chemotherapy 1992, 36: 1991–1996.

    CAS  PubMed  Google Scholar 

  20. Sougakoff W, Goussard S, Courvalin P: The TEM-3 β-lactamase, which hydrolyzes broad-spectrum cephalo-sporins, is derived from the TEM-2 penicillinase by two amino acid substitutions. FEMS Microbiology Letters 1988, 56: 343–348.

    CAS  Google Scholar 

  21. Gutmann L, Ferré B, Goldstein FW, Rizk N, Pinto-Schuster E, Acar JF, Collatz E: SHV-5, a novel SHV-type β-lactamase that hydrolyzes broad-spectrum cephalosporins and monobactams. Antimicrobial Agents and Chemotherapy 1989, 33: 951–956.

    CAS  PubMed  Google Scholar 

  22. Jarlier V, Nicolas M-H, Fournier G, Philippon A: Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents inEnterobacteriaceae: hospital prevalence and susceptibility patterns. Reviews of Infectious Diseases 1988, 10: 867–878.

    CAS  PubMed  Google Scholar 

  23. Buré A, Legrand P, Arlet G, Jarlier V, Paul G, Philippon A: Dissermination in five French hospitals ofKlebsiella pneumoniae serotype K25 harboring a new transferable enzymatic resistance to third generation cephalosporins and aztreonam. European Journal of Clinical Microbiology 1988, 7: 780–782.

    Article  Google Scholar 

  24. Ambler RP, Coulson AFW, Frére J-M, Ghuysen J-M, Joris B, Forsman M, Levesque RC, Tiraby G, Waley SG: A standard numbering scheme for the class A beta-lactamases. Biochemical Journal 1991, 276: 269–272.

    CAS  PubMed  Google Scholar 

  25. Medeiros AA: Plasmid-determined beta-lactamases. In Bryan LE (ed): Microbial resistance to drugs. Handbook of experimental pharmacology, volume 91. Springer Verlag, Berlin, 1989, p. 101–127.

    Google Scholar 

  26. Reig R, Roy C, Hermida M, Teruel D, Coira A: A survey of β-lactamases from 618 isolates ofKlebsiella spp. Journal of Antimicrobial Chemotherapy 1993, 31: 29–35.

    CAS  PubMed  Google Scholar 

  27. Huletsky A, Knox JR, Levesque RC: Role of Ser-238 and Lys-240 in the hydrolysis of third-generation cephalosporins by SHV-type β-lactamases probed by site-directed mutagenesis and three-dimensional modeling. Journal of Biological Chemistry 1993, 268: 3690–3697.

    CAS  PubMed  Google Scholar 

  28. Sowek JA, Singer SB, Ohringer S, Malley MF, Dougherty TJ, Gougoutas JZ, Bush K: Substitution of lysine at position 104 or 240 of TEM-1pTZ18Rβ-lactamase enhances the effect of serine-164 substitution on hydrolysis or affinity for cephalosporins and the monobactam aztreonam. Biochemistry 1991, 30: 3179–3188.

    Article  CAS  PubMed  Google Scholar 

  29. Palzkill T, Botstein D: Identification of amino acid substitution that alter the substrate specificity of TEM-1 β-lactamase. Journal of Bacteriology 1992, 174: 5237–5243.

    CAS  PubMed  Google Scholar 

  30. Sougakoff W, Petit A, Goussard S, Sirot D, Buré A, Courvalin P: Characterization of the plasmid genesblaT-4 andblaT-5 which encode the broad-spectrum β-lactamases TEM-4 and TEM-5 inEnterobacteriaceae. Gene 1989, 78: 339–348.

    Article  CAS  PubMed  Google Scholar 

  31. Christensen H, Martin MT, Waley SG: β-Lactamases as fully efficient enzymes. Biochemical Journal 1990, 266: 853–861.

    CAS  PubMed  Google Scholar 

  32. Jacoby GA, Carreras I: Activities of β-lactam antibiotics againstEscherichia coli strains producing extended-spectrum β-laatamases. Antimicrobial Agents and Chemotherapy 1990, 34: 858–862.

    CAS  PubMed  Google Scholar 

  33. Chen S-T, Clowes RC: Variations between the nucleotide sequences of Tn1, Tn2, and Tn3 and expression of β-lactamase inPseudomonas aeruginosa andEscherichia coli. Journal of Bacteriology 1987, 169: 913–916.

    CAS  PubMed  Google Scholar 

  34. Mabilat C, Goussard S, Sougakoff W, Spencer RC, Courvalin P: Direct sequencing of the amplified structural gene and promoter for the extened-broad-spectrum β-lactamase TEM-9 (RHH-1) ofKlebsiella pneumoniae. Plasmid 1990, 23: 27–34.

    Article  CAS  PubMed  Google Scholar 

  35. Goussard S, Sougakoff W, Mabilat C, Bauernfeind A, Courvalin P: An IS1-like element is responsible for high-level synthesis of extended-spectrum β-lactamase TEM-6 inEnterobacteriaceae. Journal of General Microbiology 1991, 137: 2681–2687.

    CAS  PubMed  Google Scholar 

  36. Podbielski A, Schönling J, Melzer B, Haase G: Different promoters of SHV-2 and SHV-2a β-lactamase lead to diverse levels of cefotaxime resistance in their bacterial producers. Journal of General Microbiology 1991, 137: 1667–1675.

    CAS  PubMed  Google Scholar 

  37. Petit A, Yaghlane-Bouslama HBen, Sofer L, Labia R: Does high level production of SHV-type penicillinase confer resistance to ceftazidine inEnterobacteriacea? FEMS Microbiology Letters 1992, 92: 89–94.

    CAS  Google Scholar 

  38. Sirot D, Chanal C, Labia R, Meyran M, Sirot J, Cluzel R: Comparative study of five plasmid-mediated ceftazidimases isolated inKlebsiella pneumoniae. Journal of Antimicrobial Chemotherapy 1989, 24: 509–521.

    CAS  PubMed  Google Scholar 

  39. Gutmann L, Kitzis MD, Billot-Klein D, Goldstein F, Tran Van Nhieu G, Lu T, Carlet J, Collatz E, Williamson R: Plasmid-mediated β-lactamase (TEM-7) involved in resistance to ceftazidime and aztreonam. Reviews of Infectious Disease 1988, 10: 860–866.

    CAS  Google Scholar 

  40. Yoshimura F, Nikaido H: Diffusion of β-lactam antibiotics through the porin channels ofEscherichia coli K-12. Antimicrobial Agents and Chemotherapy 1985, 27: 84–92.

    CAS  PubMed  Google Scholar 

  41. Pangon B, Bizet C, Buré A, Pichon F, Philippon A, Regnier B, Gutmann L: In vivo selection of a cephamycin-resistant, porin-deficient mutant ofKlebsiella pneumoniae producing a TEM-3 β-lactamase. Journal of Infectious Diseases 1989, 159: 1005–1006.

    CAS  PubMed  Google Scholar 

  42. Ronco E, Migueres ML, Guenounou M, Philippon A: Détection des bêtalactamases à spectre élargi avec le système ATB CMI. Pathologie Biologie 1991, 39: 480–485.

    CAS  PubMed  Google Scholar 

  43. Katsanis G, Jacoby G: The frequency of extended-spectrum β-lactamases in isolates ofKlebsiella pneumoniae. Journal of Antimicrobial Chemotherapy 1992, 29: 345–346.

    CAS  PubMed  Google Scholar 

  44. Cooksey R, Swenson J, Clark N, Gay E, Thornsberry C: Patterns and mechanisms of β-lactam resistance among isolates ofEscherichia coli from hospitals in the United States. Antimicrobial Agents and Chemotherapy 1990, 34: 739–745.

    CAS  PubMed  Google Scholar 

  45. Jacoby GA, Sutton L: Properties of plasmids responsible for extended-spectrum β-lactamase production. Antimicrobial Agents and Chemotherapy 1991, 35: 164–169.

    CAS  PubMed  Google Scholar 

  46. Gerlach BA, Wiedemann B: Tn3 as the molecular basis of ampicillin resistance inE. coli — an epidemiological survey. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionkrankheiten und Hygiene (Reihe A) 1985, 260: 139–150

    CAS  Google Scholar 

  47. Heritage J, Hawkey PM, Todd N, Lewis IJ: Transposition of the gene encoding a TEM-12 extended-spectrum β-lactamase. Antimicrobial Agents and Chemotherapy 1992, 36: 1981–1986.

    CAS  PubMed  Google Scholar 

  48. Sirot D, De Champs C, Chanal C, Labia R, Darfeuille-Michaud A, Perroux R, Sirot J: Translocation of antibiotic resistance determinants including an extended-spectrum β-lactamase between conjugative plasmids ofKlebsiella pneumonia andEscherichia coli. Antimicrobial Agents and Chemotherapy 1991, 35: 1576–1581.

    CAS  PubMed  Google Scholar 

  49. Mabilat G, Lourençao-Vital J, Goussard S, Courvalin P: A new example of physical linkage between Tn1 and Tn21: the antibiotic multiple-resistance region of plasmid pCFFO4 encoding extended-spectrum β-lactamase TEM-3. Molecular and General Genetics 1992, 235: 113–121.

    Article  CAS  PubMed  Google Scholar 

  50. Vernet V, Madoulet C, Chippaux C, Philippon A: Incidence of two virulence factors (aerobactin and mucoid phenotype) among 190 clinical isolates ofKlebsiella pneumoniae producing extended-spectrum β-lactamase. FEMS Microbiology Letters 1992, 96: 1–6.

    CAS  Google Scholar 

  51. Darfeuille-Michaud A, Jallat C, Aubel D, Sirot D, Rich C, Sirot J, Joly B: R-plasmid-encoded adhesive factor inKlebsiella pneumoniae strains responsible for human nosocomial infections. Infection and Immunity 1992, 60: 44–55.

    CAS  PubMed  Google Scholar 

  52. Rice LB, Willey SH, Papanicolaou GA, Medeiros AA, Eliopoulos GM, Moellering RC Jr, Jacoby GA Outbreak of ceftazidime resistance caused by extended-spectrum β-lactamases at a Massachusetts chronic-care facility. Antimicrobial Agents and Chemotherapy 1990, 34: 2193–2199.

    CAS  PubMed  Google Scholar 

  53. Meyer KS, Urban C, Eagan JA, Berger BJ, Rahal JJ: Nosocomial outbreak ofKlebsiella infection resistant to late-generation cephalosporins. Annals of Internal Medicine 1993, 119: 353–358.

    CAS  PubMed  Google Scholar 

  54. Papanicolaou GA, Medeiros AA, Jacoby GA: Novel plasmid-mediated β-lactamase (MIR-1) conferring resitance to oxyimino- and α-methoxy β-lactams in clinical isolates ofKlebsiella pneumoniae. Antimicrobial Agents and Chemotherapy 1990, 34: 2200–2209.

    CAS  PubMed  Google Scholar 

  55. Vedel G, Mabilat C, Goussard S, Picard B, Fournier G, Gilly L, Paul G, Phillippon A: Two variants of transferrable extended-spectrum TEM-β-lactamase successively isolated from a clinicalEscherichia coli isolate. FEMS Microbiology Letters 1992, 93: 161–166.

    CAS  Google Scholar 

  56. Bauernfeind A, Chong Y, Schweighart S: Extended broad spectrum β-lactamase inKlebsiella pneumoniae including resistance to cephamycins. Infection 1989, 17: 316–321.

    Article  CAS  PubMed  Google Scholar 

  57. Payne DJ, Woodford N, Amyes SGB: Characterization of the plasmid mediated β-lactamase BIL-1. Journal of Antimicrobial Chemotherapy 1992, 30: 119–127.

    CAS  PubMed  Google Scholar 

  58. Horii T, Arakawa Y, Ohta M, Ichiyama S, Wacharotayankun R, Kato N: Plasmid-mediated AmpC-type β-lactamase isolated fromKlebsiella pneumoniae confers resistance to broad-spectrum β-lactams, including moxalactam. Antimicrobial Agents and Chemotherapy 1993, 37: 984–990.

    CAS  PubMed  Google Scholar 

  59. Tzouvelekis LS, Tzelepi E, Mentis AF, Tsakris A: Identification of a novel plasmid-mediated β-lactamase with chromosomal cephalosporinase characteristics fromKlebsiella pneumoniae. Journal of Antimicrobial Chemotherapy 1993, 31: 645–654.

    CAS  PubMed  Google Scholar 

  60. Matsumoto Y, Ikeda F, Kamimura T, Yokota Y, Mine Y: Novel plasmid-mediated β-lactamase fromEscherichia coli that inactivates oxyimino-cephalosporins. Antimicrobial Agents and Chemotherapy 1988, 32: 1243–1246.

    CAS  PubMed  Google Scholar 

  61. Bernard H, Tancrede C, Livrelli V, Barthélémy M, Labia R: A novel plasmid-mediated extended-spectrum β-lactamase not derived from TEM- or SHV-type enzymes. Journal of Antimicrobial Chemotherapy 1992, 29: 590–592.

    CAS  PubMed  Google Scholar 

  62. Barthélémy M, Péduzzi J, Bernard H, Tancrede C, Labia R: Close amino acid sequence relationship between the new plasmid-mediated extended-spectrum β-lactamase MEN-1 and chromosomally encoded enzymes ofKlebsiela oxytoca. Biochimica et Biophysica Acta 1992, 1122: 15–22.

    PubMed  Google Scholar 

  63. Sanders CC: Chromosomal cephalosporinases responsible for multiple resistance to newer β-lactam antibiotics. Annual Review of Microbiology 1987, 41: 573–593.

    Article  CAS  PubMed  Google Scholar 

  64. Bouslama HBY, Labia R, Sirot D, Vu Thien H: Chromosomally-mediated β-lactamases produced byLevinea amalonatica with activity against methoxyimino-cephalosporins. Journal of Antimicrobial Chemotherapy 1991, 27: 191–198.

    CAS  Google Scholar 

  65. Arakawa Y, Ohta M, Kido N, Mori M, Ito H, Komatsu T, Fujii Y, Kato N: Chromosomal β-lactamase ofKlebsiella oxytoca, a new class A enzyme that hydrolyzes broad-spectrum β-lactam antibiotics. Antimicrobial Agents and Chemotherapy 1989, 33: 63–70.

    CAS  PubMed  Google Scholar 

  66. Nordmann P, Ronco E, Naas T, Duport, C, Michel-Briand Y, Labia R: Characterization of a novel extended-spectrum β-lactamase fromPseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1993, 37: 962–969.

    CAS  PubMed  Google Scholar 

  67. Franceschini N, Galleni M, Frère J-M, Oratore A, Amicosante G: A class-A β-lactamase fromPseudomonas stutzeri that is highly active against monobactams and cefotaxime. Biochemical Journal 1993, 292: 697–700.

    CAS  PubMed  Google Scholar 

  68. Saino Y, Inoue M, Mitsuhashi S: Purification and properties of an inducible cephalosporinase fromPseudomonas maltophilia GN12873. Antimicrobial Agents and Chemotherapy 1984, 25: 362–365.

    CAS  PubMed  Google Scholar 

  69. Jelsch C, Lenfant F, Masson JM, Samama JP: β-lactamase TEM1 ofE. coli. Crystal structure determination at 2.5 Å resolution. FEBS Letters 1992, 299: 135–142.

    Article  CAS  PubMed  Google Scholar 

  70. Oefner C, D'Arcy A, Daly JJ, Gubernator K, Charnas RL, Heinze I, Hubschwerlen C, Winkler FK: Refined crystal structure of β-lactamase fromCitrobacter freundii indicates a mechanism for β-lactam hydrolysis. Nature 1990, 343: 284–288.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacoby, G.A. Genetics of extended-spectrum beta-lactamases. Eur. J. Clin. Microbiol. Infect. Dis. 13 (Suppl 1), S2–S11 (1994). https://doi.org/10.1007/BF02390679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02390679

Keywords

Navigation