Skip to main content
Log in

A model of overall regulation of body fluids

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A large-scale model of body fluid regulation was presented for the purpose of studying problems concerning body fluid disturbances and fluid therapy. This model, containing subsystems of circulation, respiration, renal function, and intra and extracellular fluid spaces, was described mathematically as a set of nonlinear differential and algebraic equations of more than 200 variables. A special feature is that the respiratory and renal subsystems are combined into one system, so that acid-base disturbances of body fluid can be simulated over a wide range of time scales. Behavior of the model for various kinds of inputs simulated with a digital computer was in good agreement with a number of experimental results pertaining to body fluid and acid-base disorders. The model presented in this paper is considered to have good applicability to some clinical problems and to be a useful framework for physiological experimental research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe, Y., F. Dixon, and J. L. McNay. Dissociation between autoregulation of renal blood flow and glomerular filtration rate.Am. J. Physiol. 219:986–993, 1970.

    CAS  PubMed  Google Scholar 

  2. Blaine, E. H., J. O. Davis, and P. D. Harris. A steady-state control analysis of the renin-angiotensinaldosterone system.Circulation Res. 30:713–729, 1972.

    CAS  PubMed  Google Scholar 

  3. Brown, E. B., Jr., and B. A. Attebery. In vivo and in vitro carbon dissociation. In:Biological Handbooks: Respiration and Circulation, edited by P. L. Altman and D. C. Dittman. Bethesda: FASEB, 1971.

    Google Scholar 

  4. Burnell, J. M., M. F. Villamil, B. T. Uyeno, and B. H. Scribner. The effect in humans of extracellular pH changes on the relationships between serum potassium concentration and intracellular potassium.J. Clin. Invest. 35:935–939, 1956.

    CAS  PubMed  Google Scholar 

  5. Comroe, J. H., Jr.Physiology of Respiration. Chicago: Year Book Medical Publishers, 1965.

    Google Scholar 

  6. Cunningham, D. J. C., D. J. Shaw, S. Lahiri, and B. B. Lloyd. the effect of maintained ammonium chloride acidosis on the relation between pulmonary ventilation and alveolar oxygen and carbon dioxide in man.Q. J. Exp. Physiol. 46:323–334, 1961.

    CAS  Google Scholar 

  7. Dripps, R. D., and J. H. Comroe. The effect of the inhalation of high and low oxygen concentrations on respiration, pulse rate, ballistocardiogram and arterial oxygen saturation (oximeter) of normal individuals.Am. J. Physiol. 149:277–291, 1947.

    CAS  Google Scholar 

  8. Eger, E. I., R. H. Kellog, A. H. Mines, M. Lima-Ostos, C. G. Morril, and D. W. Kent. Influence of CO2 on ventilatory acclimatization to altitude.J. Appl. Physiol. 24:607–615, 1968.

    PubMed  Google Scholar 

  9. Fujimoto, M. and T. Kubota. Role of the kidney in acid-base balance.Sogo-Rinsho, 24:2167–2173, 1975 (in Japanese).

    Google Scholar 

  10. Giebisch, G., L. Berger, and R. F. Pitts. The external response to acute acid-base disturbances of respiratory origin.J. Clin. Invest. 34:231–245, 1955.

    CAS  PubMed  Google Scholar 

  11. Gray, J. S.Pulmonary Ventilation and Its Physiological Regulation. Springfield: Thomas, 1950.

    Google Scholar 

  12. Grodins, F. S.Control Theory and Biological Systems. New York: Columbia University Press, 1963.

    Google Scholar 

  13. Grodins, F. S., J. Buell, and A. J. Bart. Mathematical analysis and digital simulation of the respiratory control system.J. Appl. Physiol. 22:260–276, 1967.

    CAS  PubMed  Google Scholar 

  14. Grodins, F. S., J. S. Gray, K. R. Schroeder, A. L. Norins, and R. W. Jones. Respiratory responses to CO2 inhalation. A theoretical study of a nonlinear biological regulator.J. Appl. Physiol. 7:283–308, 1954.

    CAS  PubMed  Google Scholar 

  15. Grodins, F. S., W. H. Stuart, and R. L. Veenstra. Performance characteristics of the right heart bypass preparation.Am. J. Physiol. 198:552–560, 1960.

    CAS  PubMed  Google Scholar 

  16. Guyton, A. C., T. G. Coleman, and H. J. Granger. Circulation: Overall regulation.Ann. Rev. Physiol. 34:13–46, 1972.

    CAS  Google Scholar 

  17. Guyton, A. C., H. J. Granger, and A. E. Taylor. Interstitial fluid pressure.Physiol. Rev. 51: 527–563, 1971.

    Google Scholar 

  18. Hirshman, C. A., R. E. McCullough, and J. V. Weil. Normal values for hypoxia and hypercapnia ventilatory drives in man.J. Appl. Physiol. 38:1095–1098, 1975.

    CAS  PubMed  Google Scholar 

  19. Ikeda, N., T. Sato, H. Miyahara, F. Marumo, M. Shirataka, and H. Tsuruta. Study of fluid therapy using a model of body fluid regulation.Proc. 21st Japanese Renal Conf., 263, 1978 (in Japanese).

  20. Kronenberg, R., F. N. Hamilton, R. Gabel, R. Hickey, D. J. C. Read, and J. Severinghause. Comparison of three methods for quantitating respiratory response to hypoxia in man.Respiration Physiol. 16:109–125, 1972.

    CAS  Google Scholar 

  21. Marriot, H. L. Water and salt depletion.Br. Med. J. 1:245–250, 285–290, and 328–332, 1947.

    Google Scholar 

  22. Martino, J. A., and L. E. Earley. The effects of infusion of water on renal hemodynamics and the tubular reabsorption of sodium.J. Clin. Invest. 46:1229–1238, 1967.

    CAS  PubMed  Google Scholar 

  23. Perez, G. O., L. Lespier, R. Knowles, J. R. Oster, and C. A. Vaamonde. Potassium homeostasis in chronic diabetes mellitus.Arch. Internal Med. 137:1018–1022, 1977.

    CAS  Google Scholar 

  24. Pitts, R. F.Physiology of the Kidney and Body Fluids (2nd ed.), Chicago: Year Book Medical Publishers, Inc., 1968.

    Google Scholar 

  25. Real, D. J. C. A clinical method for assessing the ventilatory response to carbon dioxide.Australas. Ann. Med. 16:20–32, 1967.

    Google Scholar 

  26. Rebuck, A. S., and W. E. Woodley. Ventilatory effects of hypoxia and their dependence on Pco2.J. Appl. Physiol. 38:16–19, 1975.

    CAS  PubMed  Google Scholar 

  27. Rector, F. G., Jr., D. W. Seldis, A. D. Roberts, Jr., and J. S. Smith. The role of plasma CO2 tension and carbonic anhydrase activity in the renal reabsorption of bicarbonate.J. Clin. Invest. 39:1706–1721, 1960.

    CAS  PubMed  Google Scholar 

  28. Reeve, E. B., and A. C. Guyton.Physical Basis of Circulatory Transport. Philadelphia: Saunders, 1967.

    Google Scholar 

  29. Rosenfeld, M. G.Manual of Medical Therapeutics (20th ed.). Waltham: Little Brown, 1971.

    Google Scholar 

  30. Sagawa, K. Comparative models of overall circulatory mechanics. In:Advances in Biomedical Engineering, edited by J. H. U. Brown and J. F. Dickson III. New York, Academic Press, 1973, vol. 3, pp. 1–92.

    Google Scholar 

  31. Sato, T., S. M. Yamashiro, D. Vega, and F. S. Grodins. Parameter sensitivity analysis of a network model of systemic circulatory mechanics.Ann. Biomed. Eng. 2:289–306, 1974.

    Article  CAS  PubMed  Google Scholar 

  32. Scribner, B. H.Fluid and Electrolyte Balance. Seattle: University of Washington, 1969.

    Google Scholar 

  33. Shimizu, K. Studies on osmoregulatory system: Experimental analysis with clinical and simulation studies.Jpn. J. Nephrol. 9:251–281, 1967 (in Japanese).

    Google Scholar 

  34. Swan, R. C., D. R. Axelrod, M. Seip, and R. F. Pitts. Distribution of sodium bicarbonate infused into nephrectomized dogs.J. Clin. Invest. 34:1795–1801, 1955.

    CAS  PubMed  Google Scholar 

  35. Swan, R. C., and R. F. Pitts. Neutralization of infused acid by nephrectomized dogs.J. Clin. Invest. 34:205–212, 1955.

    CAS  PubMed  Google Scholar 

  36. Talbot, N. B., J. D. Crawford, and A. M. Butler. Homeostatic limits to safe parenteral fluid therapy.N. Eng. J. Med. 248:1100–1108, 1953.

    CAS  Google Scholar 

  37. Taylor, A. E., W. H. Gibson, H. J. Granger, and A. C. Guyton. Review in lymphology: The interaction between intracapillary and tissue forces in the overall regulation of interstitial fluid volume.Lymphology, 6:192–208, 1973.

    CAS  PubMed  Google Scholar 

  38. Woodbury, J. W. Regulation of pH. In:Physiology and Biophysics (19th ed.). Philadelphia: Saunders, 1965.

    Google Scholar 

  39. Yates, F. E. Good manners in good modeling: Mathematical models and computer simulations of physiological systems.Am. J. Physiol. 234:R159–160, May 1978.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, N., Marumo, F., Shirataka, M. et al. A model of overall regulation of body fluids. Ann Biomed Eng 7, 135–166 (1979). https://doi.org/10.1007/BF02363132

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02363132

Keywords

Navigation