Skip to main content
Log in

On the existence of nontangential boundary values of pseudocontinuable functions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let θ be an inner function, let θ*(H 2)=H 2⊖θH 2, and let μ be a finite Borel measure on the unit circle\(\mathbb{T}\). Our main purpose is to prove that, if every functionf∈θ*(H 2) can be defined μ-almost everywhere on\(\mathbb{T}\) in a certain (weak) natural sense, then every functionf∈θ*(H 2) has finite angular boundary values μ-almost everywhere on\(\mathbb{T}\). A similar result is true for the Lp-analog of θ*(H 2) (p>0). Bibliography: 17 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. J. Garnett,Bounded Analytic Functions, Academic Press (1981).

  2. N. K. Nikol'skii,Lectures on the Shift Operator [in Russian], Moscow (1980).

  3. A. B. Aleksandrov, “Invariant subspaces of the shift operator. Axiomatic approach,”Zap. Nauchn. Semin. LOMI,113, 7–26 (1981).

    MATH  Google Scholar 

  4. A. B. Aleksandrov, “Invariant subspaces of the inverse shift operator on the spaceH p(p ∈ (0, 1)),”Zap. Nauchn. Semin. LOMI,92, 7–29 (1979).

    MATH  Google Scholar 

  5. A. L. Vol'berg and S. R. Treil', “Embedding theorems for invariant subspaces of the inverse shift operator,”Zap. Nauchn. Semin. LOMI,149, 38–51 (1986).

    Google Scholar 

  6. W. Cohn, “Radial limits and star invariant subspaces,”Am. J. Math.,108, 719–749 (1986).

    MATH  Google Scholar 

  7. P. R. Ahern and D. N. Clark, “Radial limits and invariant subspaces,”Am. J. Math.,92, 332–342 (1970).

    MathSciNet  Google Scholar 

  8. D. Clark, “One dimensional perturbations of restricted shifts,”J. Anal. Math.,25, 169–191 (1972).

    MATH  Google Scholar 

  9. A. G. Poltoratskii, “Boundary behavior of pseudocontinuable functions,”Algebra Analiz,5, 189–210 (1993).

    MATH  MathSciNet  Google Scholar 

  10. E. M. Nikishin. “Resonance theorems and expansions in eigenfunctions of the Laplace operator,”Izv. Akad. Nauk SSSR,36, 795–813 (1972).

    MATH  Google Scholar 

  11. B. Maurey, “Thèorèmes des factorization pour les opérateurs linéaires à valeurs dans les espacesL p,”Astérisque, No.11 (1974).

  12. A. B. Aleksandrov, “On theA-integrability of boundary values for harmonic functions,”Mat. Zam.,30, 59–72 (1981).

    MATH  Google Scholar 

  13. M. G. Goluzina, “On multiplication and division for Cauchy type integrals,”Vestnik LGU, Ser. 1, No. 19, 8–15 (1981).

    MATH  MathSciNet  Google Scholar 

  14. S. V. Khrushchev and S. A. Vinogradov, “Free interpolation in the space of uniformly convergent Taylor series,”Lect. Notes Math.,864, 171–213 (1981).

    Google Scholar 

  15. A. B. Aleksandrov, “Inner functions and the related spaces of pseudocontinuable functions,”Mat. Zam.,170, 7–33 (1989).

    MATH  Google Scholar 

  16. W. Rudin, Function Theory in the Unit Ball of ℂn, Springer-Verlag (1984).

  17. E. Bishop, “A general Rudin-Carleson Theorem,”Proc. Am. Math. Soc.,13, 140–143 (1962).

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

Translated fromZapiski Nauchnykh Seminarov POMI, Vol. 222, 1995, pp. 5–17.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, A.B. On the existence of nontangential boundary values of pseudocontinuable functions. J Math Sci 87, 3781–3787 (1997). https://doi.org/10.1007/BF02355824

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02355824

Keywords

Navigation