Skip to main content
Log in

Automatic recognition of vertebral landmarks in fluoroscopic sequences for analysis of intervertebral kinematics

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Intervertebral kinematics closely relates to the functionality of the spinal segments. Direct measurement of the intervertebral kinematics in vivo is very problematic. The use of a fluoroscopic device can provide continuous screening of the lumbar tract during patient spontaneous motion, with an acceptable, low X-ray dose. The kinematic analysis is intended to be limited to planar motion. Kinematic parameters are computed from vertebral landmarks on each frame of the image sequence. Landmarks are normally selected manually in spite of the fact that this is subjective, tedious to perform and regarded as one of the major contributors to errors in the computed kinematic parameters. The aim of this work is to present an innovative method for the automatic recognition of vertebral landmarks throughout a fluoroscopic image sequence to provide an objective and more precise quantification of intervertebral kinematics. The recognition procedure is based upon comparing vertebral features in two adjacent frames by means of a cross-correlation index, which is also robust despite the low signal-to-noise ratio of the lumbar fluoroscopic images. To provide a quantitative assessment of this method a calibration model was used which consisted of two lumbar vertebrae linked by a universal joint. The reliability and accuracy of the kinematic measurements have been investigated. The errors are of the order of a millimetre for the localisation of the intervertebral centre of rotation and tenths of a degree for the intervertebral angle. Error analysis suggests that this method improves the accuracy of the intervertebral kinematic calculations and has the potential to automate the selection of anatomical landmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Amevo, B. (1991): ‘Instantaneous axis of rotation of the typical cervical motion segments’. PhD thesis, University of Newcastle, Newcastle, Australia

    Google Scholar 

  • Amevo, B., Worth, D., andBogduk, N. (1991): ‘Instantaneous axis of rotation of the typical cervical motion segments: a study in normal volunteers’,Clin. Biomech.,6, pp. 111–117

    Google Scholar 

  • An, H. S., Haughton, V. M., Lim, T. H., Hong, J., Nowicki, B., You, L., andYoshida, H. (1996): ‘The relationship between disc degeneration and kinematics characteristics of the lumbar spine motion segment’. Proceedings of the 11th Annual Conference of the North American Spine Society, 23–26 October 1996

  • Aubin, C. E., Danserau, J., Petit, Y., Parent, F., De Guise, J. A., andLabelle, H. (1998): ‘Three-dimensional measurement of wedged scoliotic vertebrae and intervertebral disks’,Eur. Spine J.,7, pp. 59–65

    Article  Google Scholar 

  • Bakke, S. N. (1931): ‘Roentgenologische Beobachtungen uber die Bewegungen de Wirbersaule’,Acta Radiol. Suppl., 123

  • Bifulco, P., Allen, R., Della Fera, A., De Stefano, A., Magliulo, R., andBreen, A. C. (1995): ‘Automatic recognition of vertebral landmarks using videofluoroscopic images: an alternative for spine kinematics’. Proceedings of BIOMED '95 Simulation in Biomedicine, Milan, Italy, 21–23 June 1995

  • Bifulco, P., Cesarelli, M., Sansone, M., Allen, R. andBracale, M. (1997): ‘Fluoroscopic analysis of intervertebral lumbar motion: a rigid model fitting technique’. Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Nice 14–19 September 1997

  • Bifulco, P. (1998): ‘Analysis of intervertebral kinematics using fluoroscopic image sequences’, PhD thesis, University of Naples, Italy

    Google Scholar 

  • Bogduk, N., Amevo, B., andPearcy, M. (1995): ‘A biological basis for instantaneous centre of rotation of the vertebral column’,J. Eng. Med.,209, pp. 177–183

    Google Scholar 

  • Breen, A., Allen, R., andMorris, A. (1989): ‘Spine kinematics: a digital videofluoroscopic technique’,J. Biomed. Eng.,11, pp. 224–228

    Google Scholar 

  • Breen, A. C. (1991): ‘The measurement of the kinematics of the human spine using videofluoroscopy and image processing’, PhD thesis, University of Southampton, Southampton

    Google Scholar 

  • Breen, A. C., Brydges, R., Nunn, H., Kause, J., andAllen, R. (1993): ‘Quantitative analysis of lumbar spine intersegmental motion’Eur. J. Physical Med. Rehab.,3, pp. 182–190

    Google Scholar 

  • Brown, B., Burnstein, A., Nash, C., andSchock, C. (1976): ‘Spinal analysis using a three dimensional radiographic technique’,J. Biomech.,9, pp. 355–365

    Article  Google Scholar 

  • Cholewicki, J., McGill, S., Wells, B., andVernon, H. (1991): ‘Method for measuring vertebral kinematics from videofluoroscopy’Clin. Biomech.,6, pp. 73–78

    Article  Google Scholar 

  • Cholewicki, J., andMcGill, S. M. (1992): ‘Lumbar posterior ligament involvement during extremely heavy lifts estimated from fluoroscopic measurements’,J. Biomech.,25, pp. 17–28

    Google Scholar 

  • Dimnet, J., Fischer, L. P., Gonon, G., andCarret, J. P. (1978): ‘Radiographic studies of lateral flexion in the lumbar spine’,J. Biomech.,11, 143–150

    Article  Google Scholar 

  • Dittmar, O. (1929): ‘Die saggital und lateralflexorische Bewegung der menschlicher Lendewirbelsaule in Roentgenbild’,Z. f. d. ges. Anat.,92, 644–667

    Google Scholar 

  • Fick, R., andStrasser, H. (1913): ‘Lehrbuch der nuskel und Gelenk Mechanik’ (Springer, Berlin)

    Google Scholar 

  • Frankel, V., andBurstein, A. (1974): ‘Biomechanics of the locomotor system,Medical engineering in research. Year book’ (Medical Publisher Inc.), pp. 505–515

  • Friberg, O. (1987): ‘Lumbar instability: a dynamic approach by traction compression radiography’,Spine,12, pp. 119–129

    Google Scholar 

  • Gertzbein, S. D., Seligman, J. Holtby, K., Chan, K. H., Kapasouri, A., andCruikshank, B. (1985): ‘Centrode patterns and segmental instability in degenerative disk disease’Spine,4, pp. 257–261

    Google Scholar 

  • Gianturco, C. (1944): ‘A roentgen analysis of the motion of the lower lumbar vertebrae in normal individuals and in patient with low back pain’,Am. J. Roentgend.,52, pp. 261

    Google Scholar 

  • Huang, T. S., andNetravali, A. N. (1994): ‘Motion and structure from feature correspondences: a review’Proc. IEEE,82, 252–268

    Article  Google Scholar 

  • JAin, A. K. (1989): ‘Fundamentals of digital image processing’ (Prentice Hall International)

  • Kinzel, G. L., Hall, A. S., andHillberry, B. M. (1972): ‘Measurements of the total motion between two body segments — I. Analytical development’,J. Biomech.,5, pp. 93–105

    Google Scholar 

  • Lysell, E. (1969): ‘Motion in the cervical spine’,Acta Orthop. Scand., Suppl. 123

  • Muggleton, J. M., andAllen, R. (1997): ‘Automatic location of vertebrae in digitized videofluoroscopic images of the lumbar spine’,J. Med. Eng. Phys.,19, pp. 77–89

    Google Scholar 

  • Muggleton, J. M., andAllen, R. (1998): ‘Insights into the measurement of vertebral translation in the sagittal plane’,J. Med. Eng. Phys.,20, pp. 21–32

    Google Scholar 

  • Page, W. H., andMonteith, W. (1992): ‘Bone movement analysis from computer processing of X-ray cinematic video images’. Proceedings of the 4th International Conference on Image Processing, IEE, 354, pp. 381–384

    Google Scholar 

  • Page, W. H., Monteith, W., andWithehead, L. (1993): ‘Dynamic spinal analysis — fact or finction’.Chiropractic J. Australia,23, pp. 82–85

    Google Scholar 

  • Panjabi, M., andWhite, A. (1971): ‘A mathematical approach for three-dimensional analysis of the mechanics of the spine’,J. Biomech.,4, pp. 203–211

    Article  Google Scholar 

  • Panjabi, M. (1973): ‘Three-dimensional mathematical model of the human spine structure’,J. Biomech.,6, pp. 671–680

    Article  Google Scholar 

  • Panjabi, M. (1979): ‘Centers and angles of rotation of body joints: a study of errors and optimization’,J. Biomech.,12, pp. 911–920

    Google Scholar 

  • Panjabi, M., Chang, D., andDvorak, J. (1992): ‘An analysis of errors in kinematics parameters associated with in vivo functional radiographs’,Spine,2, pp. 200–205

    Google Scholar 

  • Pearcy, M., andTibrewal, S. (1984): ‘Axial rotation and lateral bending in the normal lumbar spine measured by three-dimensional radiography’,Spine,6, pp. 582–587

    Google Scholar 

  • Pearcy, M., Portek, I., andShepherd, J. (1984): ‘Three-dimensional X-ray analysis of normal movement in the lumbar spine’,Spine,3, pp. 294–297

    Google Scholar 

  • Pearcy, M. (1985): ‘Stereoradiography at lumbar spine motion’,Acta Orthop. Scand., Suppl.212, Munksgaard, Copenhagen

    Google Scholar 

  • Pearcy, M. (1986): ‘Measurement of back and spinal mobility’,Clin. Biomech.,1, pp. 44–51

    Google Scholar 

  • Pearcy, M., andBogduk, N. (1988): ‘Instantaneous axes of rotation of the lumbar intervertebral joints’,Spine,13, pp. 1033–1041

    Google Scholar 

  • Rolander, S. D. (1966): ‘Motion of the lumbar spine with special reference to the stabilizing effect of posterior fusion’,Acta Orthop. Scand., Suppl. 90

  • Simonis, C. (1994): ‘Parallel calculation and analysis of spine kinematics using videofluoroscopy and image processing’, PhD thesis, University of Southampton, Southampton

    Google Scholar 

  • Simonis, C., Allen, R., andBreen, A. (1994): ‘Rigid model fitting technique: an alternative in the selection of landmarks on spinal images’. Proceedings of the fifth Symposium on Biomedical Engineering, Santiago de Compostele,2, pp. 103–104

    Google Scholar 

  • Steffen, T., Rubin, R. K., Baramki, H. G., Antoniou, J., Marchesi, D., andAebi, M. (1997): ‘A new technique for measuring lumbar segmental motion in vivo’,Spine,22, pp. 156–166

    Article  Google Scholar 

  • Tanz, S. S. (1953): ‘Motion of the lumbar spine’,Am. J. Roentgend.,69, pp. 399–412

    Google Scholar 

  • Todd, T. W., andPyle, I. S. (1928): ‘A quantitative study of the vertebral column by direct roentgenologic methods’,Amer. J. Phys. Anthrop.,12, pp. 321

    Google Scholar 

  • Van Mameren H. (1988): ‘Motion patterns in the cervical spine’. PhD thesis, University of Limburg, Dept. of Anatomy and Embriology, The Netherlands

    Google Scholar 

  • Van Mameren, H., Drukker, J. Sanches, H., andBeursgens, J. (1990): ‘Cervical spine motion in the sagittal plane (I) range of motion of actually performed movements, and X-ray cinematographic study’,Eur. J. Morphology,28, pp. 47–68

    Google Scholar 

  • Van Mameren, H., Sanches, H. Beursgens, J., andDrukker, J. (1992): ‘Cervical spine motion in the sagittal plane (II) position of segmental averaged instantaneous centers of rotation—a cineradiographic study’,Spine,17, pp. 467–474

    Google Scholar 

  • Weber, E. H. (1827): ‘Anatomisch-physiologisch Unter such ungen ubereinige Einrichtungen im Mechanismus der Menschlichen Wirbelsaule’,Arch. Anat. Physiol. Joahn Fr. Meckel, pp. 240–271

  • White, A. (1969): ‘Analysis of the thoracic spine in man’,Acta Orthop. Scand., III, Suppl. 123

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bifulco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bifulco, P., Cesarelli, M., Allen, R. et al. Automatic recognition of vertebral landmarks in fluoroscopic sequences for analysis of intervertebral kinematics. Med. Biol. Eng. Comput. 39, 65–75 (2001). https://doi.org/10.1007/BF02345268

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345268

Keywords

Navigation