Skip to main content
Log in

Vector projection of biomagnetic fields

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Biomagnetic measurements are increasingly popular as functional imaging techniques for the non-invasive assessment of electrically active tissue. Although most currently available magnetometers utilise only one component of the vector magnetic field, some studies have suggested the possibility of obtaining additional information from recordings of the full magnetic field vector. Three projection techniques were applied to different biomagnetic signals for analysis of the three orthogonal components of the vector magnetic field. Vector magnetic fields obtained from fetal cardiac activity were projected into evenly spaced directions around a unit sphere. The vector magnetic field recorded from multiple intestinal current sources with independent temporal frequencies was then projected. Finally, an external reference signal from an invasive electrode was used to project the recorded vector magnetic fields due to gastric electrical activity. In each case, it was found that the information obtained by examination of the projected magnetic field vectors have superior clinical insight to that obtained by analysis of any single magnetic field component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahonen, A. I., Hamalainen, M. S., Ilmoniemi, R. J., Kajola, M. J., Knuutila, J. E., Simola, J. T., andWilkman, V. A. (1993): ‘Sampling theory for neuromagnetic detector arrays’,IEEE Trans. Biomed. Eng.,40, pp. 858–869

    Article  Google Scholar 

  • Allescher, H. D., Abraham-Fuchs, K., Dunkel, R. E., andClassen, M. (1998): ‘Biomagnetic 3-dimensional spatial and temporal characterization of electrical activity of human stomach’,Dig. Dis. Sci.,43, pp. 683–693.

    Article  Google Scholar 

  • Anastasiadis, P. G., Kotini, A., Anninos, P., Adampolous, A., Sigalas, J., andKoutlaki, N. (2003). ‘Chaotic and periodic analysis of fetal magnetocardiogram recordings in growth restriction’,Prenat. Diagn.,23, pp. 405–409

    Article  Google Scholar 

  • Barry, W. H., Fairbank, W. M., Harrison, D. C., Lehrman, K. L., Malmivuo, J. A. V. andWikswo, J. P. (1977): ‘Measurement of the human magnetic heart vector’,Science,198, pp. 1159–1162

    Google Scholar 

  • Becker, W., Diekmann V., Jurgens, R., andCornhuber, C. (1993). ‘First experiences with a multichannel software gradiometer recording normal and tangential components of MEG’Physiol. Meas.,14, pp. A45-A50

    Article  Google Scholar 

  • Bradshaw, L. A., andWikswo, J. P. Jr (1995): ‘Autoregressive and eigenfrequency spectral analysis of magnetoenterographic signals’.Proc. 17th Ann. Int. Conf. IEEE Eng. in Med. Biol. Soc., CD-ROM

  • Bradshaw, L. A., Allos, S. H., Wikswo, J. P. Jr, andRichards, W. O. (1997): ‘Correlation and comparison of magnetic and electric detection of small intestinal electrical activity’,Am. J. Physiol.,272, pp. G1159-G1167

    Google Scholar 

  • Bradshaw, L. A., Ladipo, J. K., Staton, D. J., Wikswo, J. P., andRichards, W. O. (1999): ‘The human vector magnetogastrogram and magnetoenterogram’,IEEE Trans. Biomed. Eng.,46, pp. 959–970

    Article  Google Scholar 

  • Bradshaw, L. A., Wijesinghe, R. S., andWikswo, J. P. Jr (2001): ‘A spatial filtering approach for comparison of the forward and inverse problems of electroencephalography and magnetoencephalography’,Ann. Biomed. Eng. 29, pp. 214–226

    Google Scholar 

  • Brenner, D., Lipton, J., Kaufman, L., andWilliamson S. J. (1978): ‘Somatically evoked magnetic fields of the human brain’,Science,199, pp. 81–83

    Google Scholar 

  • Buist, M. L., Cheng, L. K., Yassi, R., Smith, N. P., Bradshaw, L. A., andPullan, A. J. (2002): ‘An anatomically based model of the gastrointestinal tract for magnetic imaging’.Proc. Second Joint Meeting BMES & IEEE/EMBS CD-ROM

  • Burghoff, M., Schleyerbach, H., Drung, D., Trahms, L. andKoch, H. (1999): ‘A vector magnetometer module for biomagnetic application’,IEEE Trans. Appl. Supercond.,9, pp. 4069–4072

    Article  Google Scholar 

  • Cabot, R., andCohatsu, S. (1976): ‘The effects of ischaemia on the electrical and contractile activities of the canine small intestines’,Am. J. Surg.,136, pp. 242–246

    Google Scholar 

  • Carelli P., Chiaventi, L., Leoni, R., Pullano, M., andSchirripa Spagnolo, G. (1991): ‘A planar second-order DC SQUID gradiometer’,Clin. Phys. Physiol. Meas.,12, pp. 13–19

    Google Scholar 

  • Christensen, J., Schedl J. P., andClifton, J. A. (1966): ‘The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal men and in patients with a variety of diseases’,Gastro.,50, pp. 309–315

    Google Scholar 

  • Diamant, N. E., andBortoff, A. (1969): ‘Nature of the intestinal slow-wave frequency gradient’,Am. J. Physiol.,216, pp. 301–307

    Google Scholar 

  • Diekmann, V., Becker, W., Grozniger, B., Jurgens, R., andKorhuber, C. (1991): ‘A comparison of normal and tangential magnetic field component measurements in biomagnetic investigations’,Clin. Phys. Physiol. Meas.,12, pp. 55–59

    Google Scholar 

  • Dunajski, Z., andPeters, M. (1995): ‘Development of the fetal magnetocardiograms from the 13th week of gestation onward’, inBaumgartner, C., Deeke, L., Stroink, G., andWilliamson, S. J. (Eds): ‘Biomagnetism: fundamental research and clinical applications’ (Elsevier Science, IOS Press, Amsterdam, 1995), pp. 340–341

    Google Scholar 

  • Fleckenstein, P. (1978): ‘Migrating electrical spike activity in the fasting human small intestine’,Am. J. Dig. Dis.,23, pp. 769–775

    Google Scholar 

  • Freeman, W. J. (1980): ‘Use of spatial deconvolution to compensate for distortion of EEG by volume conduction’,IEEE Trans. Biomed. Eng.,27, pp. 421–429

    Google Scholar 

  • George, J. S., Aine, C. J., Mosher, J. C., Schmidt, D. M., Ranken, D. M., Schlitt, H. A., Wood, C. C., Lewine, J. D., Sanders, J. A., andBelliveau, J. W. (1995): ‘Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging’,J. Clin. Neurophysiol.,12, pp. 406–431

    Google Scholar 

  • Grimm, B., Kaehler, C., Schleussner, E., Schneider, U., Haueisen, J., andSeewald, J. H. (2003): ‘Influence of intrauterine growth restriction on cardiac time intervals evaluated by fetal magnetocardiography’,Early Hum. Dev. 74, pp. 1–11

    Article  Google Scholar 

  • Hosono, T., Kanagawa, T., Chiba, Y., Kandori, A., andTsukada, K. (2002): ‘The coincidence of fetal magnetocardiography and direct electrocardiography in a case of fetal atrial flutter due to intracardiac tumor’,Fetal Diagn. Ther.,17, pp. 331–333

    Google Scholar 

  • Hukkinen, K., Kariniemi, V., Katila, T. E., Laine, H., Lukander, R., andMakipaa, P. (1976): ‘Instantaneous fetal heart rate monitoring by electromagnetic methods’,Am. J. Obstet. Gynecol.,125, pp. 1115–1120

    Google Scholar 

  • Ishii, K., Chiba, Y., Sasaki, Y., Kawamata, K., andMiyashita, S. (2003): ‘Fetal atral tachycardia diagnosed by magnetocardiography and direct fetal electrocardiography. A case report of treatment with propanolol hydrochloride’,Fetal Diagn. Ther.,18, pp. 463–466

    Article  Google Scholar 

  • Kahler, C., Schleussner, E., Grimm, B., Schneider, A., Schneider, U., Nowak, H., andSeewald, H. J. (2002): ‘Fetal magnetocardiography: development of the fetal cardiac time intervals’,Prenat. Diagn.,22, pp. 408–414

    Google Scholar 

  • Kajola, M., Ahonen, A., Hamalainen, M. S., Knuutila, J., Lounasmaa, O. V., Simola, J., andVilkman, V. (1991): ‘Development of multichannel neuromagnetic instrumentation in Finland’,Clin. Phys. Physiol. Meas.,12, pp. 39–44

    Google Scholar 

  • Kandori, A., Tsukada, K., Haruta, Y., Noda, Y., Terada, Y., Mitsui, T. andSekihara, K. (1996): ‘Reconstruction of twodimensional current distribution from tangential MCG’,Phys. Med. Biol.,41, pp. 1705–1716

    Article  Google Scholar 

  • Kandori, A., Miyashita, T., Tsukada, K., Hosono, T., Miyashita, S., Chiba, Y., Horigome, H., Shigemitsu, S., andAsaka, M. (2001): ‘Prenatal diagnosis of QT prolongation by fetal magnetocardiograms—use of QRS and T-wave currentarrow maps’,Physiol. Meas.,22, pp. 377–387

    Article  Google Scholar 

  • Karinemi, V., andHukkinen, K. (1977): ‘Quantification of fetal heart rate variability by magnetocardiography and direct electrocardiography’,Am. J. Obstet Gynecol.,128, pp. 526–530

    Google Scholar 

  • Kincses, W. E., Braun, C., Kaiser, S., Grodd, W., Ackermann, H., andMathiak, K. (2003): ‘Reconstruction of extended cortical sources for EEG and MEG based on a Monte-Carlo-Markov-chain estimator’,Hum. Brain Mapp.,18, pp. 100–110

    Article  Google Scholar 

  • Lang, G., Shahani, U., Weir, A. I., Maas, P., Pegrum, C. M., andDonaldson, G. B. (1998): ‘Neuromagnetic recordings of the human peripheral nerve with planar SQUID gradiometers’,Phys. Med. Biol.,43, pp. 2379–2384

    Article  Google Scholar 

  • Lantz, G., Spinelli, L., Menendez, R. G., Seeck, M., andMichel, C. M. (2001): ‘Localization of distributed sources and comparison with FMRI’,Epileptic Disord., pp. 45–28

  • Lauronen, L., Huttunen, J., Kirveskari, E., Wilkstrom, H., Sainio, K., Autti, T., andSantavuori, P. (2002): ‘Enlarged SI and SII somatosensory evoked responses in the CLN5 form of neuronal ceroid lipfuscinosis’,Clin. Neurophysiol.,113, pp. 1491–1500

    Article  Google Scholar 

  • Lowery, C. L., Campbell, J. Q., Wilson, J. D., Murphy, P., Preissl, H., Malak, S. F., andEswaran, H. (2003): ‘Noninvasive antepartum recording of fetal S-T segment with a newly developed 151-channel magnetic sensor system’,Am. J. Obstet. Gynecol.,188, pp. 1491–1496

    Article  Google Scholar 

  • Malmivuo, J., Suihko, V., andEskola, H. (1997): ‘Sensitivity distributions of EEG and MEG measurements’,IEEE Trans. Biomed. Eng.,44, pp. 196–208

    Google Scholar 

  • Mintchev, M. P., Otto, S. J., andBowes, K. L. (1997): ‘Electrogastrography can recognize gastric electrical uncoupling in dogs’,Gastro.,112, pp. 2006–2011

    Google Scholar 

  • Mosher, J. C., Lewis, P. S., Leahy, R., andSingh, M. (1992): ‘Multiple dipole modeling and localization from spatio-temporal MEG data’,IEEE Trans. Biomed. Eng.,39, pp. 541–557

    Article  Google Scholar 

  • Nolte, G., andHamalainen, M. S. (2001): ‘Partial signal space projection for artefact removal in MEG measurements: a theoretical analysis’,Phys. Med. Biol.,46, pp. 2873–2887

    Article  Google Scholar 

  • Oostendorp, T. F., Van Oosterom, A., andJongsma, H. W. (1989): ‘The effect of changes in the conductive medium on the fetal ECG throughout gestation”,Clin. Phys. Physiol. Meas.,10, pp. 11–20

    Google Scholar 

  • Ordog, T., Baldo, M., Danko, R., andSanders, K. M. (2002): ‘Plasticity of electrical pacemaking by interstitial cells of Cajal and gastric dysrhythmias in W/Wv mutant mice’,Gastro.,123, pp. 2028–2040

    Google Scholar 

  • Pirie, A. M., andWright, J. (2003): ‘Prenatal diagnosis of the Wolf-Parkinson-White syndrome by fetal magnetocardiography’,BJOG,110, p. 710

    Google Scholar 

  • Quartero, H. W., Stinstra, J. G., Golbach, E. G., Meijboom, E. J., andPeters, M. J. (2002): ‘Clinical implications of fetal magnetocardiography’,Ultrasound Obstet. Gynecol.,20, pp. 142–153.

    Article  Google Scholar 

  • Richards, W. O., Bradshaw, L. A., Garrard, C. L., Staton, D. J., Golzarian, J., Liu, F., Buchanan, S., andWikswo, J.P. Jr (1996): ‘Magnetoenterography (MENG): Non-invasive measurement of bioelectric activity in human small intestine’,Dig. Dis. Sci. 41, pp. 2293–2301

    Article  Google Scholar 

  • Robinson, S. F. (1989): ‘Environmental noise cancellation for biomagnetic measurements’, inWilliamson, S. J., Hoke, M., Stroink, G., andKotani, M. (Eds): ‘Advances in biomagnetism’ (Plenum Press, New York, 1989), pp. 599–602

    Google Scholar 

  • Robinson, S. F., andRose, D. F. (1992): ‘Current source image estimation by spatially filtered MEG’, inHoke, M., Erne, S. N., Okada, Y. C., andRomani, G. L. (Eds): ‘Biomagnetism: clinical aspects’ (Elsevier, Amsterdam, 1992), pp. 761–765

    Google Scholar 

  • Rosell, J., Casanas, R., andScharfetter, H. (2001): ‘Sensitivity maps and system requirements for magnetic induction tomography using a planar gradiometer’,Physiol. Meas.,22, pp. 121–130

    Article  Google Scholar 

  • Schamaun, M. (1967): ‘Electromyography to determine viability of injured small bowel segments: an experimental study with preliminary clinical observations’,Surgery,62, pp. 899–909

    Google Scholar 

  • Seidel, S. A., Bradshaw, L. A., Ladipo, J. K., Wikswo, J. P. Jr. andRichards, W. O. (1999a): ‘Noninvasive detection of ischaemic bowel’,J. Vasc. Surg.,30, pp. 309–319

    Article  Google Scholar 

  • Seidel, S. A., Hegde, S. S., Bradshaw, L. A., Ladipo, J. K., andRichards, W. O. (1999b): ‘Intestinal tachyarrhythmias during small bowel ischaemia’Am. J. Physiol.,277, pp. G993-G999

    Google Scholar 

  • Stinstra, J. G., andPeters, M. J. (2002): ‘The influence of fetoabdominal tissues on fetal ECGs and MCGs’,Arch. Physiol. Biochem.,110, pp. 165–176

    Article  Google Scholar 

  • Szurszewski, J., andSteggerda, F. R. (1968): ‘The effect of hypoxia on the electrical slow wave of the canine small intestine’,Am. J. Dig. Dis.,13, pp. 168–177

    Google Scholar 

  • Tesche, C. D., Uusitalo, M. A., Ilmoniemi, R. J., Huotilainen, M., Kajola, M., andSalonen, O. (1995): ‘Signal-space projection of MEG data characterize both distributed and well-localized neuronal sources’,Electroencephalogr. Clin. Neurophysiol.,95, pp. 189–200

    Google Scholar 

  • Tsukada, K., Haruta, Y., Adachi, A., Ogata, H., Komuro, T., Ito, T., Takada, Y., Kandori, A., Noda, Y., Terada, Y., andMitsui, T. (1995): ‘Multichannel SQUID system detecting tangential components of the cardiac magnetic field’,Rev. Sci. Instrum.,66, pp. 5085–5091

    Article  Google Scholar 

  • Turnbull, G. K., Ritcey, S. P., Stroink, G., Brandts, B., andVan Leeuwen, P. (1999): ‘Spatial and temporal variations in the magnetic fields produced by human gastrointestinal activity’.Med. Biol. Eng. Comput.,37, pp. 549–554

    Google Scholar 

  • Vrba, J., andRobinson, S. F. (2001): ‘Signal processing in magnetoencephalography”,Methods,25, pp. 249–271

    Article  Google Scholar 

  • Wakai, R. T., Strasburger, J. F., Li, Z., Deal, B. J., andGotteiner, N. L. (2003): ‘Magnetocardiographic rhythm patters at initiation and termination of fetal supraventricular tachycardia’,Circ.,107, pp. 307–312

    Google Scholar 

  • Wood, C. C., Cohen, D., Cuffin, B. N., Yarita, M., andAllison, T. (1985): ‘Electrical sources in human somatosensory cortex: identification by combined magnetic and potential recordings’,Science,227, pp. 1051–1053

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradshaw, L.A., Myers, A., Richards, W.O. et al. Vector projection of biomagnetic fields. Med. Biol. Eng. Comput. 43, 85–93 (2005). https://doi.org/10.1007/BF02345127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345127

Keywords

Navigation