Skip to main content
Log in

Arterial baroreflex influence on heart rate variability: A mathematical model-based analysis

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The influence of the arterial baroreflex on the heart rate variability is analysed by using a mathematical model of heart rate baroreceptor control. The basic mechanisms of the model, sufficient to elicit heart rate variability include: systemic circulation, a non-pulsatile cardiac pump and nonlinear negative feedback simulating arterial baroreflex closed-loop control of the heart rate (−3bpm/mmHg as maximum reflex sensitivity). The latter reproduces, through two distinct delayed branches (0.8 and 2.8 s), the short-term autonomic control effected respectively by sympathetic and parasympathetic divisions on the sinus node. By means of this model, two distinct self-sustained oscillatory components with incommensurate frequencies (0.1 and 0.26 Hz) are reproduced. Frequencies of these two oscillatory components closely agree with the main heart rate rhythms in humans (0.09±0.01 Hz and 0.26±0.01 Hz). When sympathetic-mediated regulation prevails over parasympathetic activity, simulated heart rate oscillation is characterised by a low frequency (∼0.1 Hz). On the other hand, a high-frequency oscillatory component (∼0.26 Hz) appears when enhanced vagal activation or partial inhibition of the sympathetic control is simulated. When both autonomic divisions are operative, both low- and high-frequency components are present and the heart rate oscillates quasi-periodically. This variability in heart rate at different frequencies is reproduced without including outside perturbations and is due to the nonlinear delayed structure of the closed-loop control. Bifurcation theory of nonlinear system is used to explain the high sensitivity of the heart rate oscillatory pattern to model parameter changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Barger, A. C. andCohen, R. J. (1981): ‘Power spectral analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control’,Science Wash.,213, pp. 220–224

    Google Scholar 

  • Bailey, J. R., Fitzgerald, D. M. andApplegate, R. J. (1996): ‘Effects of constant cardiac autonomic nerve stimulation on heart rate variability’,Am. J. Physiol.,270, pp. H2081-H2087

    Google Scholar 

  • Berger, R. D., Saul, J. P. andCohen, R. J. (1989): ‘Transfer function analysis of autonomic regulation in canine atrial rate response’,Am. J. Physiol.,256, pp. H142-H152

    Google Scholar 

  • Borst, C. andKaremaker, J. M. (1983): ‘Time delay in the human baroreceptor reflex’,J. Auton. Nerv. Syst.,9, pp. 399–409

    Google Scholar 

  • Cavalcanti, S. andBelardinelli, E. (1996): ‘Modelling of cardiovascular variability using differential delay equation’,IEEE Trans. Biomed. Eng.,43, pp. 982–989

    Article  Google Scholar 

  • Cavalcanti, S. andUrsino, M. (1996): ‘Chaotic oscillations in microvessel arterial networks’,Ann. Biom. Eng.,24, pp. 27–47

    Google Scholar 

  • Cavalcanti, S., Severi, S. andEnzmann, G. (1998): ‘Analysis of oscillatory components of short-term heart rate variability in hemodynamically stable and unstable patients during hemodialysis’,Artificial Organs,22, pp. 1–9

    Article  Google Scholar 

  • Chapleau, M. W. andAbboud, F. M. (1987): ‘Contrasting effects of static and pulsatile pressure on carotid baroreceptor activity in dogs’,Circ. Res.,61, pp. 648–658

    Google Scholar 

  • Chess, G. F., Tam, R. M. andCalaresu, F. R. (1975): ‘Influence of cardiac neural inputs on rhythmic variations of heart period in the cat’,Am. J. Physiol.,128, pp. 775–789

    Google Scholar 

  • de Boer, R. W., Karemaker, J. M. andStrackee, J. (1985): ‘Relationship between short-term blood-pressure fluctuations and heart-rate variability in resting subjects II: a simple model’,Med. Biol. Eng. Comput.,23, pp. 359–364

    Google Scholar 

  • de Boer, R. W., Karemaker, J. M. andStrackee, J. (1987): ‘Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model’,Am. J. Physiol.,253, pp. H680-H689

    Google Scholar 

  • Franz, G. N. (1969): ‘Nonlinear rate sensitivity of the carotid sinus reflex as a consequence of static and dynamic nonlinearities in baroreceptor behavior’,Ann. NY Acad. Sci.,156, pp 811–824

    Google Scholar 

  • Glass, L., Hunter, P. andMacKey, M. C. (1988): ‘From Clocks to Chaos: the rhythm of life’ (Princeton University Press, Princeton)

    Google Scholar 

  • Goldberger, A. L., Rigney, D. R. andWest, B. J. (1990): ‘Chaos and fractals in human physiology’,Sci. Am.,262, pp. 42–49

    Google Scholar 

  • Guyton, A. G. andColeman, T. G. (1972): ‘Circulation: overall regulation’,Ann. Rev. Physiol.,34, pp. 13–46

    Google Scholar 

  • Guzzetti, S., Cogliati, C., Broggi, C., Carozzi, C., Caldiroli, D., Lombardi, F. andMalliani, A. (1994): ‘Influences of neural mechanisms on heart period and arterial pressure variabilities in quadriplegic patients’,Am. J. Physiol.,266, pp. H1112–1120

    Google Scholar 

  • Head, G. A. andMcCarty, R. (1987): ‘Vagal and sympathetic components of the heart rate range and gain of the baroreceptor-heart rate reflex in conscious rats’,J. Auton. Nerv. Syst.,21, pp. 203–213

    Article  Google Scholar 

  • Hirsch, J. A. andBishop, B., (1981): ‘Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate’,Am. J. Physiol.,241: pp. H620-H629

    Google Scholar 

  • Hyndman, B. W., Kitney, R. I. andMcA Sayer, B. (1971): ‘Spontaneous rhythms in physiological control system’,Nature Lond.,233, pp. 339–341

    Article  Google Scholar 

  • Horner, R. L., Brooks, D., Kozar, L. F., Gan, K. andPhillipson, E. A. (1995): ‘Respiratory-related heart rate variability persists during central apnea in dogs: mechanisms and implications’,J. Appl. Physiol.,78, pp. 2003–2013

    Google Scholar 

  • Hosomi, H. (1978): ‘Unstable state of the arterial pressure control system after a mild hemorrhage’,Am. J. Physiol.,235, pp. R279–285

    Google Scholar 

  • Kamath, M. V. andFallen, E. L. (1993): ‘Power spectral analysis of heart rate variability: a non invasive signature of cardiac autonomic function’,Crit. Rev. Biomed. Eng.,21, pp. 245–311

    Google Scholar 

  • Kitney, R. I. andRompelman, O. (1980): ‘The study of heart rate variability’ (Clarendon Press, Oxford)

    Google Scholar 

  • Koepchen, H. P. (1984): ‘History of studies and concepts of blood pressure waves’ inMiyakawa, K., Koepchen, H. P. andPolosa, C. (Eds): ‘Mechanisms of Blood Pressure’ (Springer-Verlag, Berlin), pp. 3–23

    Google Scholar 

  • Korner, P. I., West, M. J., Shaw, J. andUther, J. B. (1974): ‘Steadystate properties of the baroreceptor-heart rate reflex in essential hypertension in man’,Clin. Exp. Pharmacol. Physiol.,1, pp. 65–76

    Google Scholar 

  • Kuznetsov, Y. A. (1995): ‘Elements of applied bifurcation theory’ (Springer-Verlag, Berlin)

    Google Scholar 

  • Levy, M. N. andZieske, H. (1969): ‘Autonomic control of cardiac pacemaker activity and atrioventricular transmission’,J. Appl. Physiol.,27, pp. 465–470

    Google Scholar 

  • Lipsitz, L. A., Mietus, J., Moody, G. B. andGoldberger, A. L. (1990): ‘Spectral characteristics of heart rate variability before and during paostural tilt’,Circulation,81, pp. 1803–1810

    Google Scholar 

  • Madwed, J. B., Albrecht, P., Mark, R. G., andCohen, R. J. (1989): ‘Low-frequency oscillations in arterial pressure and heart rate: a simple computer model’,Am. J. Physiol.,256, pp. H1573-H1579

    Google Scholar 

  • Maliani, A., Pagani, M., Lombardi, F. andCerutti, S. (1991): ‘Cardiovascular neural regulation explored in the frequency domain’,Circulation,84, pp. 1482–1492

    Google Scholar 

  • Mancia, G. andMark, A. (1983): ‘Arterial baroreflexes in humans’, inShepherd J. T. andAbboud F. M. (Eds): ‘Handbook of Physiology. Sec. 2, The Cardiovascular System Vol. III’ (Williams & Wilkins Company, Baltimore), pp 755–793

    Google Scholar 

  • Milnor, W. R. (1989): ‘Emodynamics’ (Williams & Wilkins, Baltimora, USA), pp. 171–172

    Google Scholar 

  • Mpitsos, G. J., Burton, M. R., Crecech, H. C. andSoinila, S. O. (1988): ‘Evidence for chaos in spike trains of neurons that generate rhythmic motor patterns’,Brain Res. Bull.,21, pp. 529–538

    Google Scholar 

  • Pomeranz, B., Macaulay, R. J., Caudill, M. A., Kutz, I., Adam, D., Gordon, D., Kilborn, K. M., Barger, A. C., Shannon, D. C. andCohen, R. J. (1985): ‘Assessment of autonomic function in humans by heart rate spectral analysis’,Am. J. Physiol.,248, pp. H151-H153

    Google Scholar 

  • Sayers, B. McA. (1973): ‘Analysis of heart variability’,Ergonomics,16, pp. 85–97

    Google Scholar 

  • Schmidt, J. A., Intaglietta, M. andBorgstrom, P. (1992): ‘Periodic hemodynamics in skeletal muscle during local arterial pressure reduction’,J. Appl. Physiol.,73, pp. 1077–1083

    Google Scholar 

  • Warner, M. (1994): ‘Time-course and frequency dependence of sympathetic stimulation-evoked inhibition of vagal effect at the sinus node’,J. Autonomic Nerv. Syst.,52, pp. 23–33

    Google Scholar 

  • Warner, H. R., andCox, A. (1991): ‘A mathematical model of heart rate control by sympathetic and vagus efferent information’,J. Appl. Physiol.,17, pp. 349–355

    Google Scholar 

  • Weise, F., London, G. M., Guerin, A. P., Pannier, B. M. andElghozi, J. L. (1995): ‘Effect of head-down tilt on cardiovascular control in healthy subjects: a spectral analytic approach’,Clin. Sci.,88, pp. 87–93

    Google Scholar 

  • Westerhof, N., Elzinga, G. andSipkema, P. (1971): ‘An artificial arterial system for pumping hearts’,J. Appl. Physiol.,31, pp. 776–781

    Google Scholar 

  • Zwillinger, D. (1989): ‘Handbook of differential equations’ (Academic Press, Inc., Boston, USA)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cavalcanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalcanti, S. Arterial baroreflex influence on heart rate variability: A mathematical model-based analysis. Med. Biol. Eng. Comput. 38, 189–197 (2000). https://doi.org/10.1007/BF02344775

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344775

Keywords

Navigation