Skip to main content
Log in

Under load strain partition of a ceramic matrix composite using an ultrasonic method

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A method for carrying out strain partition under load is described. An ultrasonic device and a suitable extensometer are used simultaneously. Applied to a ceramic matrix composite, it allows one to evaluate the contribution of the various damage mechanisms on its highly nonlinear behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aveston, J., Cooper, G. A. andKelly, A., “Single and Multiple Fracture,”Properties of Fiber Composites, IPC Science and Technology Press, Guildford, Surrey, England, 15–26 (1971).

    Google Scholar 

  2. Bernhart, G., Lamicq, P. andMace, J., “Fiabilité des composites céramiques-céramiques,”Ind. Céram.,790,51–56 (1985).

    Google Scholar 

  3. Evans, A. G., Domergue, J. M. andVagaggini, E., “A Methodology for Relating the Tensile Constitutive Behavior of Ceramic Matrix Composites to Constituent Properties,”Proc. HT-CMC,1,Bordeaux, France,1–29 (1993).

    Google Scholar 

  4. Hutchinson, J. W. andJensen, H. M., “Models of Fiber Debonding and Pullout in Brittle Composites with Friction,”Mech. Mater.,9,139–163 (1990).

    Article  Google Scholar 

  5. Naslain, R., “Fibrous Ceramic-Ceramic Composite Materials Processing and Properties,”J. Phys.,47,C1-703–C1-715 (1986).

    Google Scholar 

  6. Budiansky, B., Hutchinson, J. andEvans, A. G., “Matrix Fracture in Fiber-Reinforced Ceramics,”J. Mech. Phys. Solids,34,167–189 (1986).

    Google Scholar 

  7. Sigl, L. S. andEvans, A. G., “Effects of Residual Stress and Frictional Sliding on Cracking and Pullout in Brittle Matrix Composites,”Mech. Mater.,8,1–12 (1989).

    Article  Google Scholar 

  8. Lene, F. andLeguillon, D., “Etude d'un glissement entre les constituants d'un matériau composite sur ses coefficients de comportement effectifs,”J. Meca.,20,509–536 (1981).

    MathSciNet  Google Scholar 

  9. Lemaitre, J. andChaboche, J. L., Mechanics of Solid Materials, Cambridge University Press, Cambridge, England (1990).

    Google Scholar 

  10. Marshall, D. B., “Analysis of Fiber Debonding and Sliding Experiments in Brittle Matrix Composites,”Acta Metall. Mater.,40 (3),427–441 (1992).

    Google Scholar 

  11. Baste, S., El Guerjouma, R. andAudoin, B., “Effect of Microcracking on the Macroscopic Behavior of Ceramic Matrix Composites: Ultrasonic Evaluation of Anisotropic Damage,”Mech. Mater.,14,15–31 (1992).

    Article  Google Scholar 

  12. Gérard, A. andBaste, S., “A Constitutive Relation for Microcracked Materials Including the Effects of Microcracks Opening-Closing,”Int. J. Eng. Sci.,32 (4),557–567 (1994).

    Google Scholar 

  13. Roux, J., Hosten, B., Castagnède, B. andDeschamps, M., “Caractérisation mécanique des solides par spectro-interférométrie ultrasonore,”Rev. Phys. Appl.,20,351–358 (1985).

    Google Scholar 

  14. Baste, S. andHosten, B., “Évaluation de la matrice d'élasticité des composites orthotropes par propagation ultrasonore en dehors des plans principaux de symétrie,”Rev. Phys. Appl.,25,161–168 (1989).

    Google Scholar 

  15. Roux, J., “Elastic Wave Propagation in Anisotropic Materials,” IEEE 1990 Ultrasonics Symposium, Honolulu, 1065–1073 (1990).

  16. Hosten, B., “Stiffness Matrix Invariants to Validate the Characterization of Composite Materials with Ultrasonic Methods,”Ultrasonics,30 (6),365–371 (1992).

    Article  Google Scholar 

  17. Audoin, B. andBaste, S., “Ultrasonic Evaluation of Stiffness Tensor Changes and Associated Anisotropic Damage in a Ceramic Matrix Composite,”J. Appl. Mech.,61,309–316 (1994).

    Google Scholar 

  18. Laws, N. andDvorak, G. J., “The Effect of Fiber Breaks and Aligned Penny-Shaped Cracks on the Stiffness and Energy Release Rates in Unidirectional Composites,”Int. J. Solids Stract.,23,1269–1283 (1987).

    Google Scholar 

  19. Audoin, B., Baste, S. andCastagnède, B., “Estimation de l'intervalle de confiance des constantes d'élasticité identifiées à partir des vitesses de propagation,”C. R. Acad. Sci. Paris,312 II,679–686 (1991).

    Google Scholar 

  20. Aubard, X., Lamon, J. andAllix, O., “Model of the Non-linear Mechanical Behavior of 2D SiC-SiC CVI-Composites,”J. Am. Ceram. Soc.,77 (8),2118–2126 (1994).

    Article  Google Scholar 

  21. Ortiz, M., “A Constitutive Theory for the Inelastic Behavior of Concrete,”Mech. Mater.,4,67–93 (1985).

    Article  Google Scholar 

  22. Kracinovic, D., “Damage Mechanics,”Mech. Mater.,8,117–197 (1989).

    Google Scholar 

  23. Baste, S. andAudoin, B., “On Internal Variables in Anisotropic Damage,”Eur. J. Mech., A/Solids,10 (6),587–606 (1991).

    Google Scholar 

  24. Kracinovic, D. andFarrella, D., “A Micromechanical Damage Model for Concrete,”Eng. Fract. Mech.,25 (5–6)585–599 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baste, S., Morvan, J.M. Under load strain partition of a ceramic matrix composite using an ultrasonic method. Experimental Mechanics 36, 148–154 (1996). https://doi.org/10.1007/BF02328711

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02328711

Keywords

Navigation