Skip to main content
Log in

Heat transfer models for nesting cavities

Wärmeaustauschmodelle für Nester in Höhlungen

  • Published:
Archives for meteorology, geophysics, and bioclimatology, Series B Aims and scope Submit manuscript

Summary

The basic steady state heat transfer equations for convection, conduction, and radiant energy exchange were combined and adapted to the problem of modeling heat losses from small mammals and birds at rest in nesting cavities. The derived model describes heat loss rates in terms of a generalized heat transfer coefficient as a function of cavity height, diameter, wall thickness and thermal conductivity, and the radiative emissivity of interior cavity surfaces. The model was computerized and used to obtain 3125 unique solutions for combinations of a wide range of cavity characteristics; tabular data, graphical interpolations, and a statistical model were used to identify the most critical cavity features for any given set of animal-environmental conditions.

Zusammenfassung

Die Grundgleichungen des Energieaustausches durch Konvektion, Wärmeleitung und Strahlungsaustausch im stationären Zustand wurden zum Modellieren der Wärmeabgabe von kleinen Säugetieren und Vögeln im Ruhestand in ihren Behausungen angewandt. Durch Verwendung des verallgemeinerten Wärmeaustauschkoeffizienten wird in dem erhaltenen Modell die Wärmeabgabe als Funktion der Höhe der Höhlung, ihres Durchmessers, der Wanddicke, des Wärmeleitungsvermögens und des Strahlungsvermögens ihrer inneren Wand ausgedrückt. Auf Grund der Modellgleichungen wurde das Rechenprogramm entwickelt, das zur Berechnung von 3125 Sonderfällen für einen breiten Bereich der Charakteristika der Höhlung benutzt wurde. Die kritischen Eigenschaften der Höhlungen unter bestimmten Verhältnissen der Umgebung der Tiere wurden auf Grund der Tabellen, graphischer Interpolation und mit Hilfe des statistischen Models festgestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkebak, R. C.: Heat Transfer in Biological Systems. In: International Review General and Experimental Zoology, Vol. II (Felts, W. J., Harrison, R. J., eds.). New York: Academic Press 1966.

    Google Scholar 

  2. Monteith, J. L.. Principles of Environmental Physics. London: E. Arnold Publishers 1973.

    Google Scholar 

  3. Gates, D. M., Spotila, J. R.: Body Size, Insulation, and Optimum Body Temperatures of Homeotherms. In: Perspectives of Biophysical Ecology (Gates, D. M., Schmerl, R. B., eds.). Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  4. Chappell, M. A.: Insulation, Radiation, and Convection in Small Arctic Animals. J. Mammalogy61, 268–277 (1980).

    Article  Google Scholar 

  5. Headstrom, R.: A Complete Field Guide to Nests in the United States. New York: Ives Washburn Inc. 1970.

    Google Scholar 

  6. Gates, D. M., Schmerl, R. B. (eds.): Perspectives of Biophysical Ecology. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  7. Weast, R. C. (ed.): Handbook of Chemistry and Physics, 55th ed. Cleveland, Ohio: Chemical Rubber Company 1975.

    Google Scholar 

  8. Thorkelson, J., Maxwell, R. K.: Design and Testing of a Heat Transfer Model of a Raccoon in a Closed Tree Den. Ecology55, 29–39 (1974).

    Article  Google Scholar 

  9. Lasiewski, R. C.: Respiratory Function in Birds. In: Avian Biology (Farner, D. S., King, J. R., eds). New York: Academic Press 1972.

    Google Scholar 

  10. Kreith, F.: Principles of Heat Transfer. Scranton, Pennsylvania: International Textbook Company 1958.

    Google Scholar 

  11. Fornito, L.: Design Criteria for Nesting Cavities. M. S. Thesis. Morgantown, West Virginia: West Virginia University 1981.

    Google Scholar 

  12. Scholander, P. F., Hock, R., Walters, V., Irving, L.: Adaptation to Cold in Arctic and Tropical Mammals and Birds in Relation to Body Temperature, Insulation, and Basal Metabolic Rate. Biol. Bull.99, 259–271 (1950).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fornito, L., Lee, R. & Tajchman, S.J. Heat transfer models for nesting cavities. Arch. Met. Geoph. Biocl., Ser. B 30, 271–282 (1982). https://doi.org/10.1007/BF02323367

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02323367

Keywords

Navigation