Skip to main content
Log in

Generalized symmetric Runge-Kutta methods

Verallgemeinerte symmetrische Runge-Kutta-Verfahren

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper the concept of symmetry for Runge-Kutta methods is generalized to include composite methods. The extrapolations of the usual compositions of a symmetric method ℛ of the form

are shown not to beA-stable. However, this limitation can be overcome by considering composite methods of the form

where

represents a non-symmetric and possiblyL-stable method called a symmetrizer satisfying

. While no longer symmetric, these composite methods yet satisfy

and thus share with symmetric methods the important property of admitting asymptotic error expansions in even powers of 1/n. Composite methods that are constructed in this way and presented in this paper have implementation costs comparable to that for the symmetric method. They generalize those based on the implicit midpoint and trapezoidal rules used with the standard smoothing formulae and thus extend the class of methods for acceleration techniques of extrapolation and defect correction. A characterization ofL-stable symmetrizers for 2-stage symmetric methods is given and studied for a particular stiff model problem. The analysis suggests that certainL-stable symmetrizers can play an important role in suppressing order defect effects for stiff problems.

Zusammenfassung

In dieser Arbeit verallgemeinern wir den Symmetriebegriff für Runge-Kutta-Verfahren auf zusammengesetzte Verfahren. Die übliche Aneinanderreihung symmetrischer Schritte ℛ zu

keineA-stabilen Extrapolationsstufen ergibt. Diese Einschränkung läßt sich jedoch mit Hilfe zusammengesetzter Verfahren der Form

umgehen, wobei das als “Symmetrizer” bezeichnete nicht-symmetrische und möglicherweiseL-stabile Verfahren

die Bedingung

erfüllt. Obwohl sie nicht im engeren Sinn symmetrisch sind, erfüllen diese zusammengesetzen Verfahren

und haben deshalb wie die symmetrischen Verfahren asymptotische Fehlerentwicklungen in geraden Potenzen von 1/n. Die Implementierung solcher in dieser Arbeit behandelter Verfahren führt zu Kosten, die denen bei symmetrischen Verfahren vergleichbar sind. Diese Verfahren stellen eine Verallgemeinerung der impliziten Mittelpunkt- und Trapezregeln mit Standardglättung dar und erweitern die Methoden, für die Konvergenzbeschleunigung mittels Extrapolation und Defektkorrektur möglich ist. DieL-stabilen Symmetrizer für 2-stufige symmetrische Verfahren werden charakterisiert und an Hand eines speziellen steifen Modellproblems studiert. Die Analyse läßt erwarten, daß gewisseL-stabile Symmetrizer eine wichtige Rolle bei der Unterdrückung von Ordnungsabfalleffekten bei steifen Problemen spielen können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auzinger, W., Frank, R.: Asymptotic error expansions for stiff equations: An analysis for the implicit midpoint and trapezoidal rules in the strongly stiff case. Report Nr. 73/88, Institut für Angewandte und Numerische Mathematik, TU Wien, 1988.

  2. Auzinger, W., Frank, R.: Asymptotic error expansions for stiff equations: The implicit midpoint rule. Report Nr. 77/88, Institut für Angewandte und Numerische Mathematik, TU Wien, 1988.

  3. Auzinger, W., Frank, R. Kirlinger, G.: Asymptotic error expansions for stiff equations: Applications. Report Nr. 78/89, Institut für Angewandte und Numerische Mathematik TU Wien, 1989.

  4. Auzinger, W., Frank, R., Macsek, F.: Asymptotic error expansions for stiff equations, Part 2: The strongly stiff case. Report Nr. 67/86, Institut für Angewandte und Numerische Mathematik, TU Wien, 1986.

  5. Auzinger, W., Frank, R., Macsek, F.: Asymptotic error expansions for stiff equations, Part 2: The mildly stiff case. Report Nr. 68/86, Institut für Angewandte und Numerische Mathematik, TU Wien, 1986.

  6. Bader, G., Deuflhard, P.: A semi-implicit midpoint rule for stiff systems of ordinary differential equations. Numer. Math.41, 373–398 (1983).

    Google Scholar 

  7. Boehmer, K., Stetter, H. J. (eds.): Defect correction methods. Theory and applications. Wien, New York: Springer 1984 (Computing Supplement 5).

    Google Scholar 

  8. Burrage, K., Butcher, J. C.: Stability criteria for implicit Runge-Kutta methods. SIAM J. Numer. Anal.16, 46–57 (1979).

    Google Scholar 

  9. Butcher, J. C.: Coefficients for the study of Runge-Kutta integration processes. J. Austral. Math. Soc.3, 185–201 (1963).

    Google Scholar 

  10. Butcher, J. C.: Implicit Runge-Kutta processes. Math. Comp.18, 50–64 (1964).

    Google Scholar 

  11. Butcher, J. C.: An algebraic theory of integration methods. Math. Comp.26, 79–106 (1972).

    Google Scholar 

  12. Butcher, J. C.: The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods. Great Britain: Wiley 1987.

    Google Scholar 

  13. Chan, R. P. K.: Extrapolation of Runge-Kutta methods for stiff initial value problems Ph.D. Thesis, University of Auckland, 1989.

  14. Chan, R. P. K.: Families of Runge-Kutta methods for extrapolation (In preparation).

  15. Chan, R. P. K.: On symmetric Runge-Kutta methods of high order. Computing45, 301–309 (1990).

    Google Scholar 

  16. Chan, R. P. K.: On theA-stability of Runge-Kutta extrapolations (In preparation).

  17. Crouzeix, M.: Sur laB-stabilité des méthodes de Runge-Kutta. Numer. Math.32, 75–82 (1979).

    Google Scholar 

  18. Dahlquist, G., Jeltsch, R.: Generalized disks of contractivity for explicit and implicit Runge-Kutta methods. Report TRITA-NA-7906, Dept. of Numer. Anal. and Computing Sc., The Roy. Inst. of Tech., Stockholm, 1979.

    Google Scholar 

  19. Dahlquist, G., Lindberg, B.: On some implicit one-step methods for stiff differential equations. Dept. of Computer Sciences, Roy. Inst. Tech., Report TRITA-NA-7302, 1973.

  20. Ehle, B. L.: On Padé approximations to the exponential function andA-stable methods for the numerical solution of initial value problems. Research Report CSRR 2010, Dept. AACS, University of Waterloo, 1969.

  21. Frank, R., Schneid, J., Ueberhuber, C. W.: The concept ofB-convergence. SIAM J. Numer. Anal.18, 753–780 (1981).

    Google Scholar 

  22. Frank, R., Schneid, J., Ueberhuber, C. W.: Stability properties of implicit Runge-Kutta methods. SIAM J. Numer. Anal.22, 497–515 (1985).

    Google Scholar 

  23. Frank, R., Schneid, J., Ueberhuber, C. W.: Order results for implicit Runge-Kutta methods applied to stiff systems. SIAM J. Numer. Anal.22, 515–534 (1985).

    Google Scholar 

  24. Gear, C. W.: Numerical initial value problems in ordinary differential equations. New Jersey: Prentice-Hall 1971.

    Google Scholar 

  25. Gragg, W. B.: On extrapolation algorithms for ordinary initial value problems. SIAM J. Numer. Anal.2, 384–403 (1965).

    Google Scholar 

  26. Hairer, E., Bader, G., Lubich, Ch.: On the stability of semi-implicit methods for ordinary differential equations. BIT22, 211–232 (1982).

    Google Scholar 

  27. Hairer, E., Lubich, Ch.: Asymptotic expansions of the global error of fixed-stepsize methods. Numer. Math.45, 345–360 (1984).

    Google Scholar 

  28. Hairer, E., Nørsett, S. P., Wanner, G.: Solving ordinary differential equations I. Berlin, Heidelberg Springer 1987 (Springer Series in Computational Mathematics8).

    Google Scholar 

  29. Hairer, E., Wanner, G.: On the Butcher group and general multi-value methods. Computing13, 1–15 (1974).

    Google Scholar 

  30. Hairer, E., Wanner, G.: Algebraically stable and implementable Runge-Kutta methods of high order. SIAM J. Numer. Anal.18, 1098–1108 (1981).

    Google Scholar 

  31. Hundsdorfer, W. H., Spijker, M. N.: A note onB-stability of Runge-Kutta methods. Numer. Math.36, 319–333 (1981).

    Google Scholar 

  32. Lindberg, B.: On smoothing and extrapolation for the trapezoidal rule. BIT.11, 29–52 (1971).

    Google Scholar 

  33. Prothero, A., Robinson, A.: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comp.28, 145–162 (1974).

    Google Scholar 

  34. Richardson, L. F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philos. Trans. Roy. Soc. London, Ser. A.210, 307–357 (1910).

    Google Scholar 

  35. Richardson, L. F., Gaunt, J. A.: The deferred approach to the limit. Philos. Trans. Roy. Soc. London, Ser. A.226, 299–361 (1927).

    Google Scholar 

  36. Scherer, R., Türke, H.: Reflected and transposed Runge-Kutta methods. BIT23, 262–266 (1983).

    Google Scholar 

  37. Stetter, H. J.: Asymptotic expansions for the error of discretization algorithms for non-linear functional equations. Numer. Math.7, 18–31 (1965).

    Google Scholar 

  38. Stetter, H. J.: Analysis of discretization methods for ordinary differential equations. Berlin, Heidelberg, New York: Springer 1973.

    Google Scholar 

  39. Wanner, G.: Runge-Kutta methods with expansions in even powers ofh. Computing11, 81–85 (1973).

    Google Scholar 

  40. Widlund, O.: A note on unconditionally stable linear multistep methods. BIT.7, 65–70 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, R.P.K. Generalized symmetric Runge-Kutta methods. Computing 50, 31–49 (1993). https://doi.org/10.1007/BF02280038

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02280038

AMS Subject Classifications

Key words

Navigation