Skip to main content
Log in

TheHermes element fromMusca domestica can transpose in four families of cyclorrhaphan flies

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Transgenic insect technology will provide opportunities to explore the basic biology of a broad range of insect species in ways that will prove insightful and important. It is also a technology that will provide opportunities to manipulate the genotypes of insects of practical significance to the health and welfare of humans. TheHermes transposable element from the housefly,Musca domestica, is a short inverted repeat-type element related tohobo fromDrosophila melanogaster, Ac fromZea mays, andTam3 fromAntirrhinum majus. It has potential to become a versatile and efficient broad host-range insect transformation vector. The ability ofHermes to transpose when introduced into five species of diptera from four divergent families was tested using anin vivo, interplasmid transpositional recombination assay.Hermes was capable of transposing in all species tested, demonstrating thatHermes has a broad host-range. In addition, the rates of transposition were sufficiently high in all species tested to suggest thatHermes will be an efficient gene transfer vector in a wide range of insect species. TheHermes element also revealed a pattern of integration into the target substrate that permitted factors determining integration site selection to be identified. Primary nucleotide sequence of the integration site played a role as did proximity to preferred integration sites and the nucleosomal organization of the target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts, M.G.M., W.G. Dirkse, W.J. Steikema & A. Pereira, 1993. Transposon tagging of a male sterility gene inArabidopsis. Nature 363: 715–717.

    Google Scholar 

  • Atkinson, P.W., W.D. Warren & D.A. O'Brochta, 1993. Thehobo transposable element ofDrosophila can be cross-mobilized in houseflies and excises like theAc element of maize. Proc. Natl. Acad. Sci. USA 90: 9693–9697.

    Google Scholar 

  • Berg, D.E. & M.M. Howe, Eds. 1989.Mobile DNA. Washington, D.C., American Society of Microbiology.

    Google Scholar 

  • Blackman, R.K., M. Macy, D. Koehler, R. Grimaila & W.M. Gelbart, 1989. Identification of a fully-functionalhobo transposable element and its use for germ-line transformation ofDrosophila. EMBO J. 8: 211–217.

    Google Scholar 

  • Brennan, M.D., R.G. Rowan & W.J. Dickinson, 1984. Introduction of a functionalP element into the germ-line ofDrosophila hawaiiensis. Cell 38: 147–151.

    Google Scholar 

  • Bron, S., 1990. Plasmids.Molecular biological methods for Bacillus, pp. 75–174, edited by C.R. Harwood & S.M. Cutting, John Wiley & Sons, New York.

    Google Scholar 

  • Calvi, B.R., T.J. Hong, S.D. Findley & W.M. Gelbart, 1991. Evidence for a common evolutionary origin of inverted repeat transposons inDrosophila and plants:hobo, Activator, andTam3. Cell 66: 465–471.

    Google Scholar 

  • Cary, L.C., M. Goebel, B.G. Corsaro, H.G. Wang, E. Rosen & M.J. Fraser, 1989. Transposon mutagenesis of baculoviruses: analysis ofTrichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172: 156–169.

    Google Scholar 

  • Chang, A.C.Y. & S.N. Cohen, 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriology 134: 1141–1156.

    Google Scholar 

  • Coates, C.J., A.J. Howells, D.A. O'Brochta & P.A. Atkinson, 1996a. The 5′ regulatory region from theDrosophila pseudoobscura hsp82 gene results in a high level of reporter gene expression inLucilia cuprina embryos. Gene: 199–201.

  • Coates, C.J., K.N. Johnson, H.D. Perkins, A.J. Howells, D.A. O'Brochta & P.W. Atkinson, 1996b. Thehermit transposable element of the Australian sheep blowfly,Lucilia cuprina, belongs to thehAT family of transposable elements. Genetica 97: 23–31.

    Google Scholar 

  • Coates, C.J., C.L. Turney, M. Frommer, D.A. O'Brochta & P.W. Atkinson, 1997. Interplasmid transposition of the mariner transposable element in non-drosophilid insects. Molec. Gen. Genet. in press.

  • Craig, N.L., 1995. Unity in transposition reactions. Science 270: 253–254.

    Google Scholar 

  • Dean, D., 1981. A plasmid cloning vector for the direct selection of strains carrying recombinant plasmids. Gene 15: 99–102.

    Google Scholar 

  • Engels, W.R., 1989. Pelements inDrosophila melanogaster. Mobile DNA, pp. 439–484, edited by D.E. Berg & M.M. Howe, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Feldmar, S. & R. Kunze, 1991. The ORFa protein, the putative tansposase of maize transposable elementAc, has a basic DNA binding domain. EMBO J. 1013: 4003–4010.

    Google Scholar 

  • Franz, G., T.G. Loukeris, G. Dialektaki, C.R.L. Thompson & C. Savakis, 1994. MobileMinos elements fromDrosophila hydei encode a two-exon transposase with similarity to thepaired DNA-binding domain. Proc. Natl. Acad. Sci. USA 91: 4746–50.

    Google Scholar 

  • Franz, G. & C. Savakis, 1991.Minos, a new transposable element fromDrosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res. 19: 6646.

    Google Scholar 

  • Fraser, M.J., L. Cary, K. Boonvisudhi & H.-G.H. Wang, 1995. Assay for movement of lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology 211: 397–407.

    Google Scholar 

  • Fraser, M.J., G.E. Smith & M.D. Summers, 1983. The acquisition of host cell DNA sequences by baculoviruses: Relation between host DNA insertions and FP mutants ofAutographa californica andGalleria mellonella NPVs. J. Virology 47: 287–300.

    Google Scholar 

  • Gay, P., D.L. Coq, M. Steinmetz, T. Berkelman & C.I. Kado, 1985. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J. Bacteriology 164: 918–921.

    Google Scholar 

  • Grzesiuk, E. & D. Carroll, 1987. Recombination of DNAs in Xenopus oocytes based on short homologous overlaps. Nucl. Acid Res. 15: 391–985.

    Google Scholar 

  • Handler, A.M. & S.P. Gomez, 1996. Thehobo transposable element excises and has related elements in tephritid species. Genetics 143: 1339–1347.

    Google Scholar 

  • Hashimoto-Gotoh, T., A. Tsujimura, K.-Y. Kuriyama & S. Matsuda, 1993. Construction and characterization of new host-vector systems for the enforcement-cloning method. Gene 137: 211–216.

    Google Scholar 

  • Hehl, R., 1994. Transposon tagging in heterologous host plants. Trends in Genetics 10: 385–386.

    Google Scholar 

  • Hesse, J.E., M.R. Lieber, M. Gellert & K. Mizuuchi, 1987. Extrachromosomal DNA substrates in pre-B cells undergo inversion or deletion at immunoglobulin V-D.-J joining signals. Cell 49: 775–783.

    Google Scholar 

  • Hirt, B., 1967. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26: 365–369.

    Google Scholar 

  • Inoue, S., H., Matsubara, & T. Yamanaka, 1985. Complete amino acid sequence of cytochromec from the honeybee,Apis mellifera, and evolutionary relationships of the honeybee to other insects on the basis of the amino acid sequence. J. Biochem. 97: 947–954.

    Google Scholar 

  • Kassis, J.A., E. Noll, E.P. VanSickle, W.F. Odenwald & N. Perrimon, 1992. Altering the insertional specificity of aDrosophila transposable element. Proc. Natl. Acad. Sci. U.S.A. 89: 1919–1923.

    Google Scholar 

  • Lampe, D.J. & H.M. Robertson, 1996. A purifiedmariner transposase is sufficient to mediate transpositionin vitro. EMBO J. 15: 5470–5479.

    Google Scholar 

  • Lidholm, D., A. Lohe & D. Hartl, 1993. The transposable elementmariner mediates germline transformaton inDrosophila melanogaster. Genetics 134: 859–868.

    Google Scholar 

  • Lohe, A.R. & D.L. Hartl, 1996. Germline transformation ofDrosophila virilis with the transposable element mariner. Genetics 143: 365–374.

    Google Scholar 

  • Loukeris, T.G., I. Livadaras, B. Arca, S. Zabalou & C. Savakis, 1995. Gene transfer into the Medfly,Ceratitis capitata, using aDrosophila hydei transposable element. Science 270: 2002–2005.

    Google Scholar 

  • Lozovskaya, E.R., D.I. Nurminsky, D.L. Hartl & D.T. Sullivan, 1996. Germline transformation ofDrosophila virilis mediated by the transposable elementhobo. Genetics 142: 173–177.

    Google Scholar 

  • Maclean, N., Ed. 1994.Animals with novel genes. Cambridge, Cambridge University Press.

    Google Scholar 

  • Martin, P., A. Martin, A. Osmani & W. Sofer, 1986. A transient expression assay for tissue-specific gene expression of alcohol dehydrogenase inDrosophila. Develop. Biology 117: 574–580.

    Google Scholar 

  • Maryon, E. & D. Carroll, 1991. Characterization of recombination intermediates from DNA injected intoXenopus laevis oocytes: evidence for a nonconservative mechanism of homologous recombination. Molec. Cell Biol. 11: 3278–3287.

    Google Scholar 

  • Maryon, E. & D. Carroll, 1991. Involvement of single-stranded tails in homologous recombination of DNA injected intoXenopus laevis oocyte nuclei. Molec. Cell Biol. 11: 3268–3277.

    Google Scholar 

  • McGinnis, W., A.W. Shermoen & S.K. Beckendorf, 1983. A transposable element inserted just 5′ to aDrosophila glue protein gene alters gene expression and chromatin structure. Cell 34: 75–84.

    Google Scholar 

  • O'Brochta, D.A. & P.W. Atkinson, 1996. Transposable elements and gene transformation in non-drosophilid insects. Insect Biochemistry and Molecular Biology 26: 739–753.

    Google Scholar 

  • O'Brochta, D.A. & A.H. Handler, 1988. Mobility ofP elements in drosophilids and nondrosphilids. Proc. Natl. Acad. Sci. U.S.A. 85: 6052–6056.

    Google Scholar 

  • O'Brochta, D.A., W.D. Warren, K.J. Saville & P.W. Atkinson, 1994. Interplasmid transpostion ofDrosophila hobo elements in nondrosophilid insects. Molec. Gen. Genet. 244: 9–14.

    Google Scholar 

  • O'Brochta, D.A., W.D. Warren, K.J. Saville & P.W. Atkinson, 1996.Hermes, a functional non-drosophilid insect gene vector fromMusca domestica. Genetics. 142: 907–914.

    Google Scholar 

  • Pinkerton, A.C., D.A. O'Brochta & P.W. Atkinson, 1996. Mobility ofhAT transposable elements in the Old World American bollworm,Helicoverpa armigera. Insect Molecular Biology. 5: 223–227.

    Google Scholar 

  • Pryciak, P.M. & H.E. Varmus, 1992. Nucleosomes, DNA-binding protiens, and DNA sequence modulate retroviral integration target site selection. Cell 69: 769–780.

    Google Scholar 

  • Rio, D.C., 1991. Regulation ofDrosophila P element transposition. Trends Genet. 7: 282–287.

    Google Scholar 

  • Rohdendorf, B.B. 1974. The historical development of Diptera. Translated from the Russian by J.E. Moore & I. Thiele; edited by B. Hocking, H. Oldroyd, G.E. Ball, University of Alberta Press, Edmonton, 360pp.

    Google Scholar 

  • Rommens, C.M. T., M.J.J. Van Haaren, H.J.J. Nijkamp & J. Hille, 1993. Differential repair of excision gaps generated by transposable elements of the ‘Ac family’. BioEssays 158: 507–512.

    Google Scholar 

  • Roth, D.B., T.N. Porter & J.H. Wilson, 1985. Mechanisms of nonhomologous recombination in mammalian cells. Molec. Cell. Biol. 5: 2599–2607.

    Google Scholar 

  • Rubin, G.M. & A.C. Spradling, 1982. Genetic transformation ofDrosophila with transposable element vectors. Science 218: 348–353.

    Google Scholar 

  • Sambrook, J., E.F. Fritsch & T. Maniatis, 1989.Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Sanger, F., S. Nicklen & A.R. Coulson, 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74: 5463–5467.

    Google Scholar 

  • Scavarda, N.J. & D.L. Hartl, 1984. Interspecific DNA transformation inDrosophila. Proc. Natl. Acad. Sci. USA 81: 7515–7519.

    Google Scholar 

  • Selbitschka, W., S. Niemann & A. Puhler, 1993. Construction of gene replacement vectors for gram-bacteria using a genetically modified sacRB gene as a positive selection marker. Appl. Micro. and Biotech. 38: 615–618.

    Google Scholar 

  • Smith, D., J. Wohlgemuth, B.R. Calvi, I. Franklin & W.M. Gelbart, 1993.Hobo enhancer trapping mutagenesis inDrosophila Reveals an insertion specificity different fromP elements. Genetics 135: 1063–1076.

    Google Scholar 

  • Sokal, R.R. & F.J. Rohlf, 1981.Biometry. W.H. Freeman and Company, New York.

    Google Scholar 

  • Spradling, A.C. & G.M. Rubin, 1982. Transposition of clonedP elements intoDrosophila germ line chromosomes. Science 218: 341–347.

    Google Scholar 

  • Spradling, A.C., 1986. P element-mediated transformation, pp. 175–198 inDrosophila. A practical approach, edited by D.B. Roberts. IRL Press, Oxford and Washington, D.C., IRL Press.

    Google Scholar 

  • Stellar, H. & V. Pirrotta, 1985. Fate of DNA injected into earlyDrosophila embryos. Develop. Biology 109: 54–62.

    Google Scholar 

  • Streck, R.D., J.E. MacGaffey & S.K. Beckendorf, 1986. The structure ofhobo transposable elements and their insertion sites. EMBO J. 5: 3615–3623.

    Google Scholar 

  • Sutcliffe, J.G., 1978. Complete nucleotide sequence of theEscherichia coli plasmid pBR322. Cold Spring Harbor Symp. Quant. Biol. 43: 77–90.

    Google Scholar 

  • Takashi, A., N. Noguchi, S. Masanoni & M. Kono, 1987. Complete nucleotide sequence of pTZ12, a chloramphenicol-resistance plasmid ofBacillus subtilis. Gene 51: 107–111.

    Google Scholar 

  • Vos, J.C., I. DeBaere & R.H.A. Plasterk, 1996. Transposase is the only nematode protein required for in vitro transposition ofTc1. Genes and Develop. 10: 755–761.

    Google Scholar 

  • Warren, W.D., P.W. Atkinson & D.A. O'Brochta, 1994. TheHermes transposable element from the housefly,Musca domestica, is a short inverted repeat-type element of thehobo, Ac, andTam3 hAT element family. Genetical Res. Camb. 64: 87–97.

    Google Scholar 

  • Yanisch-Perron, C., J. Vieira & J. Messing, 1985. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, A., Coates, C.J., Whyard, S. et al. TheHermes element fromMusca domestica can transpose in four families of cyclorrhaphan flies. Genetica 99, 15–29 (1997). https://doi.org/10.1007/BF02259495

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02259495

Key words

Navigation