Skip to main content
Log in

The protective effect of adenosine triphosphate-MgCl2 on ischemia-reperfusion lung injury is leukocyte dependent

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

Adenosine triphosphate (ATP)-MgCl2 attenuates ischemia-reperfusion (I-R)-induced lung injury in rats. A previous study indirectly suggests that Mg2+-dependent ecto-ATPases on the surface of leukocytes are responsible for the hydrolysis of ATP-MgCl2 to adenosine, which then contributes to the protective effect of ATP-MgCl2. This study investigated the role of leukocytes in I-R injury and the protective effect of ATP-MgCl2 in our buffer-perfused isolated rat lung model. After isolating the lung blood flow of adult male Sprague-Dawley rats, the lungs were perfused through the pulmonary artery cannula with a physiologic salt solution containing human serum albumin. The protective effect of ATP-MgCl2 pretreatment with or without leukocytes was investigated. Capillary permeability (Kfc), lung weight gain (LWG), lung wet weight/body weight ratio (LW/BW), lung lavage protein concentration (LPC) and pulmonary artery pressure (PAP) were measured. I-R produced a significant increase in Kfc, LWG, LW/BW, LPC, and PAP. The increases in these indices were significantly attenuated by pretreatment with ATP-MgCl2 (1×10−6 M) together with leukocytes (2.9×106/ml in the perfusate) but not with ATP-MgCl2 alone. Our data suggest that I-R-induced acute lung injury is not dependent on circulating leukocytes. Pretreatment with ATP-MgCl2 plus leukocytes but not ATP-MgCl2 alone had protective effects against I-R lung injury. Whether these findings occur in vivo could not be determined in this study. In our isolated lung red blood cell-free perfusate system, the protective effect of ATP-MgCl2 requires the presence of leukocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akimitsu T, Gute DC, Korthuis RJ. Ischemic preconditioning attenuates postischemic leukocyte adhesion and emigration. Am J Physiol 271:H2052-H2059;1996.

    PubMed  Google Scholar 

  2. American Association for Laboratory Animal Science. Guide for the Care and Use of Laboratory Animals, ed revised. Bethesda, National Institutes of Health, Publication No 85-23; 1996.

  3. Bertuglia S, Colantuoni A, Intaglietta M. Effect of leukocyte adhesion and microvascular permeability on capillary perfusion during ischemia-reperfusion injury in hamster cheek pouch. Int J Microcirc Clin Exp 13:13–26;1993.

    PubMed  Google Scholar 

  4. Bhaskar L, Mathan MM, Balasubramanian KA. Oxygen free radical-induced damage during colonic ischemia/reperfusion in rats. Mol Cell Biochem 151:9–14;1995.

    Article  PubMed  Google Scholar 

  5. Bouma MG, van den Wildenberg FA, Buurman WA. The anti-inflammatory potential of adenosine in ischemia-reperfusion injury: Established and putative beneficial actions of a retaliatory metabolite. Shock 8:313–320;1997.

    PubMed  Google Scholar 

  6. Chaudry IH. Use of ATP following shock and ischemia. Ann NY Acad Sci 603:130–140;1990.

    PubMed  Google Scholar 

  7. Chu SJ, Chang DM, Wang D, Hsu K, Chiang CH. Protective effect of lipophilic antioxidants on phorbol-induced acute lung injury in rats. Crit Care Med 29:819–824;2001.

    PubMed  Google Scholar 

  8. Cronstein BN. Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 76:5–13;1994.

    PubMed  Google Scholar 

  9. Cronstein BN, Levin RI, Philips M, Hirschhorn R, Abramson SB, Weissmann G. Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J Immunol 148:2201–2206;1992.

    PubMed  Google Scholar 

  10. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: A new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev 53:135–159;2001.

    PubMed  Google Scholar 

  11. Deeb GM, Grum CM, Lynch MJ, Guynn TP, Gallagher KP, Ljungman AG, Bolling SF, Morganroth ML. Neutrophils are not necessary for induction of ischemia-reperfusion lung injury. J Appl Physiol 68:374–381;1990.

    PubMed  Google Scholar 

  12. Deussen A, Bading B, Kelm M, Schrader J. Formation and salvage of adenosine by macrovascular endothelial cells. Am J Physiol 264:H692-H700;1993.

    Google Scholar 

  13. Doumas BT. Determination of serum albumin standard methods. Clin Chem 7:175–177;1972.

    Google Scholar 

  14. Eppinger MJ, Jones ML, Deeb GM, Bolling SF, Ward PA. Pattern of injury and the role of neutrophils in reperfusion injury of rat lung. J Surg Res 58:713–718;1995.

    Article  PubMed  Google Scholar 

  15. Haniuda M, Dresler CM, Cooper JD, Patterson GA. Free radical-mediated vascular injury in lungs preserved at moderate hypothermia. Ann Thorac Surg 60:1376–1381;1995.

    Article  PubMed  Google Scholar 

  16. Hsu K, Wang D, Wu SY, Shen CY, Chen HI. Ischemia-reperfusion lung injury attenuated by ATP-MgCl2 in rats. J Appl Physiol 76:545–552;1994.

    PubMed  Google Scholar 

  17. Jarrar D, Wang P, Cioffi WG, Bland KI, Chaudry IH. Critical role of oxygen radicals in the initiation of hepatic depression after trauma hemorrhage. J Trauma 49:879–885;2000.

    PubMed  Google Scholar 

  18. Jeong C, Lee SM. The beneficial effect of ATP-MgCl2 on hepatic ischemia/reperfusion-induced mitochondrial dysfunction. Eur J Pharmacol 403:243–250;2000.

    Article  PubMed  Google Scholar 

  19. Khimenko PL, Moore TM, Hill LW, Wilson PS, Coleman S, Rizzo A, Taylor AE. Adenosine A2 receptors reverse ischemia-reperfusion lung injury independent of beta-receptors. J Appl Physiol 78:990–996;1995.

    PubMed  Google Scholar 

  20. Kopf GS, Chaudry I, Condos S, Baue AE. Reperfusion with ATP-MgCl2 following prolonged ischemia improves myocardial performance. J Surg Res 43:114–117;1987.

    PubMed  Google Scholar 

  21. Kyriakides C, Austen WG Jr, Wang Y, Favuzza J, Moore FD Jr, Hechtman HB. Neutrophil mediated remote organ injury after lower torso ischemia and reperfusion is selectin and complement dependent. J Trauma 48:32–38;2000.

    PubMed  Google Scholar 

  22. Linden J. Molecular approach to adenosine receptors: Receptor-mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol 41:775–787;2001.

    Article  PubMed  Google Scholar 

  23. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163;1985.

    PubMed  Google Scholar 

  24. McGarrity ST, Stephenson AH, Webster RO. Regulation of human neutrophil functions by adenine nucleotides. J Immunol 142:1986–1994;1989.

    PubMed  Google Scholar 

  25. Mocan H, Saruhan H, Arslan MK, Erduran E, Sarpkaya AO, Efe H, Yenilmez E. The effect of ATP-MgCl2 on lipid peroxidation in ischemic and reperfused rabbit kidney. Eur J Pediatr Surg 9:42–46;1999.

    Google Scholar 

  26. Robinson DA, Wang P, Chaudry IH. Administration of ATP-MgCl2 after trauma-hemorrhage and resuscitation restores the depressed cardiac performance. J Surg Res 69:159–165;1997.

    Article  PubMed  Google Scholar 

  27. Sakuma T, Takahashi K, Ohya N, Kajikawa O, Martin TR, Albertine KH, Matthay MA. Ischemia-reperfusion lung injury in rabbits: Mechanisms of injury and protection. Am J Physiol 276:L137-L145;1999.

    PubMed  Google Scholar 

  28. Steimle CN, Guynn TP, Morganroth ML, Bolling SF, Carr K, Deeb GM. Neutrophils are not necessary for ischemia-reperfusion lung injury. Ann Thorac Surg 53:64–73;1992.

    PubMed  Google Scholar 

  29. Sud'ina GF, Mirzoeva OK, Galkina SI, Pushkareva MA, Ullrich V. Involvement of ecto-ATPase and extracellular ATP in polymorphonuclear granulocyte-endothelial interactions. FEBS Lett 423:243–248;1998.

    PubMed  Google Scholar 

  30. Wang D, Li MH, Hsu K, Shen CY, Chen HI, Lin YC. Air embolism-induced lung injury in isolated rat lungs. J Appl Physiol 72:1235–1242;1992.

    PubMed  Google Scholar 

  31. Weinbroum AA, Hochhauser E, Rudick V, Kluger Y, Karchevsky E, Graf E, Vidne BA. Multiple organ dysfunction after remote circulatory arrest: Common pathway of radical oxygen species? J Trauma 47:691–698;1999.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, WT., Huang, WH., Wang, D. et al. The protective effect of adenosine triphosphate-MgCl2 on ischemia-reperfusion lung injury is leukocyte dependent. J Biomed Sci 10, 725–730 (2003). https://doi.org/10.1007/BF02256324

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256324

Key Words

Navigation