Skip to main content
Log in

Theories for laminated and sandwich plates

A review

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

The growing use of sandwich and laminated plates requires a theoretically based prediction of the mechanical behavior of structural elements of such type. Starting with the pioneering studies of Reissner, a great number of theories for the engineering calculations have been developed. The review deals with the classification of the theories and discusses some of them in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. W. Ehrenstein, Faserverbund-Kunstoffe, Hanser, München (1992).

    Google Scholar 

  2. V. Dundrová, V. Kovarik, P. Šlapák, Biegetheorie der Sandwichplatten, Academia, Praha (1970).

    Google Scholar 

  3. K. Stamm K., H. Witte, Sandwichkonstruktionen, Springer, Wien-New York (1974).

    Google Scholar 

  4. A. K. Noor and W. S. Burton, “Assessment of computational models for multilayered anisotropic plates”, Compos. Structures,14, 233–265 (1990).

    Google Scholar 

  5. F. K. Noor and W. S. Burton, Assessment of computational models for multilayered anisotropic plates, Appl. Mech. Rev.,43, No. 4, 67–97 (1990).

    Google Scholar 

  6. F. K. Noor and W. S. Burton, and C. W. Bert, Computational models for sandwich panels and shells, Appl. Mech. Rev.,49, No. 3, 155–199 (1996).

    Google Scholar 

  7. A. Puck, Festigkeitsanalyse an Faser-Matrix-Laminaten: Realistische Bruchkriterien und Degrationsmodelle, Hanser, München (1996).

    Google Scholar 

  8. H. Altenbach, “Modelling of viscoelastic behaviour of plates”, in: M. Życzkowski (ed.), Creep in Structures, Springer, Berlin, (1990), pp. 531–537.

    Google Scholar 

  9. S. A. Ambartsumyan, Theory of Anisotropic Plates [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  10. E. I. Grigolyuk and I. T. Seleznev, “Nonclassical theories of oscillations of rods, plates, and shells”, Itogi Nauki I Tekhniki. Ser. Mekh. Tverdogo Deformir. Tela, 5, Moscow (1973).

  11. P. M. Naghdi, The Theory of Plates and Shells. Handbuch der Physik (S. Flügge, Hrsg.), Bd. VI a/2, Springer, Berlin (1972).

    Google Scholar 

  12. E. Reissner, “Reflections on the theory of elastic plates”, Appl. Mech. Rev.,38, No. 11, 1453–1464 (1985).

    Google Scholar 

  13. W. Wunderlich, Vergleich verschiedener Approximationen der Theorie dünner Schalen (mit numerischen Beispielen), Techn. Wiss. Mitt. der Instituts für Konstruktiven Ingenierbau der Ruhr-Universität Bochum, 73-1 (1973).

  14. G. Kirchhoff, “Über das Gleichgewicht und die Bewegung einer elastischen Scheibe”, J. Reine Angew. Math.,40, 51–88 (1850).

    Google Scholar 

  15. E. Reissner, “On the theory of bending of elastic plates”, J. Math. Phys.,23, 184–191 (1944).

    Google Scholar 

  16. H. Hencky, “Über die Berücksichtigung der Schubverzerrung in ebenen Platten”, Ingenieur-Archiv,16, 72–76 (1947).

    Google Scholar 

  17. S. A. Ambartsumyan, “On the bending theory of anisotropic plates and shallow shells”, Izv. Akad. Nauk SSSR, No. 5, 69–77 (1958).

    Google Scholar 

  18. M. Levinson, “An accurate simple theory of the statics and dynamics of elastic plates”, Mech. Res. Comm.,7, No. 6, 343–350 (1980).

    Google Scholar 

  19. T. Lewinski, “On refined plate models based on kinematical assumptions”, Ingenieur-Archiv,57, 133–146 (1987).

    Google Scholar 

  20. K. H. Lo, R. M. Christensen, and E. M. Wu, “A high-order theory of plate deformation. Pt. I: Homogeneous plates”, Trans. ASME, J. Appl. Mech.,44, No. 4, 663–668 (1977).

    Google Scholar 

  21. I. N. Vekua, Some General Methods of Constructing Different Variants of the Theory of Shallow Shells [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  22. M. Touratier, “An efficient standard plate theory”, Int. J. Eng. Sci.,29, No. 8, 901–916 (1991).

    Google Scholar 

  23. R. Kienzler, “Erweiterung der klassischen Schalentheorie; der Einfluß von Dickenverzerrung und Querschnittverwölbungen”, Ingenieur-Archiv,52, 311–322 (1982).

    Google Scholar 

  24. G. Preußer, “Eine Systematische Herleitung verbesserter Plattentheorien”, Ingenieur-Archiv,54, 51–61 (1984).

    Google Scholar 

  25. A. L. Gol'denveiser, “Construction of approximate theory of shells using asymptotic integration of equations of elasticity theories”, Prikl. Mat. Mekh.,26, No. 4, 668–686 (1962).

    Google Scholar 

  26. P. A. Zhilin, “Mechanics of deformable directed surfaces”, Int. J. Sol. Struct.,12, 635–648 (1976).

    Google Scholar 

  27. E. I. Grigolyuk and A. F. Kogan, “Current status in the theory of multilayered shells”, Prikl. Mekh.,8, No. 6, 3–17 (1972).

    Google Scholar 

  28. J. N. Reddy, “On the generalization of displacement-based laminate theories”, Appl. Mech. Rev.,42, No. 11, Pt. 2, S213-S222 (1993).

    Google Scholar 

  29. W. S. Burton and A. K. Noor, “Assessment of computational models for sandwich panels and shells”, Comput. Meth. Appl. Mech. Eng.,124, 125–151 (1995).

    Google Scholar 

  30. L. P. Khoroshun and B. V. Gerasimchuk, “Equations of bending of plates at nonlinear strains of transverse shear”, Prikl. Mekh.,18, No. 4, 64–70 (1982).

    Google Scholar 

  31. D. H. Hodges, B. W. Lee, and A. R. Atilgan, “Application of the variational-asymptotical method to laminated composite plates”, AIAA J.,31, No. 9, 1674–1683 (1993).

    Google Scholar 

  32. D. H. Robbins and J. N. Reddy, “Modelling of thick composites using a layerwise laminate theory”, Int. J. Numer. Meth. Eng.,36, 655–677 (1993).

    Google Scholar 

  33. E. I. Grigolyuk and G. M. Kulikov, “General direction of development of the theory of multilayered shells”, Mech. Compos. Mater.,24, No. 2, 231–241 (1988).

    Google Scholar 

  34. A. K. Noor and W. S. Burton, “Assessment of shear deformation theories for multilayered composite plates”, Appl. Mech. Rev.,42, No. 1, 1–13 (1989).

    Google Scholar 

  35. A. K. Noor and W. S. Burton, “Stress and free vibration analyses of multilayered composite plates”, Compos. Struct.,11, 183–204 (1989).

    Google Scholar 

  36. J. N. Reddy and D. H. Robbins, “Theories and computational models for composite laminates”, Appl. Mech. Rev.,47, No. 6, Pt. 1, 21–35 (1994).

    Google Scholar 

  37. H. Altenbach and P. A. Zhilin, “General theory of elastic simple shells” Usp. Mekh.,11, No. 4, 107–148 (1988).

    Google Scholar 

  38. T. Lewinski “On displacement-based theories of sandwich plates with soft core”, Mech. Res. Comm.,17, No. 6, 375–382 (1990).

    Google Scholar 

  39. E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates”, J. Appl. Mech.,12, No. 11, 69–77 (1945).

    Google Scholar 

  40. E. Reissner, “On the bending of elastic plates” Quart. Appl. Math.,5, 55–68 (1947).

    Google Scholar 

  41. F. B. Hildebrand, E. Reissner, and G. B. Thomas, “Notes on the foundations of the theory of small displacements of orthotropic shells”, T. N. 1883, NACA (1949).

  42. H. Altenbach, V. Matzdorf, “Zu einigen Anwendungen direkt formulierter Plattentheorien”, Wiss. Z. TU Magdeburg,32, No. 4, 95–99 (1988).

    Google Scholar 

  43. E. Reissner and Y. Stavsky, “Bending and stretching of certain types of heterogeneous aeolotropic elastic plates”, Trans ASME, J. Appl. Mech.,28, No. 3, 402–408 (1961).

    Google Scholar 

  44. J. M. Whitney, “The effect of transverse shear deformation on the bending of laminated plates”, J. Compos. Mater.,3, 534–547 (1969).

    Google Scholar 

  45. P. A. Zhilin, “On the Poisson and Kirchhoff theories of plates from the viewpoint of modern plate theory”, Izv. RAN. Mekh. Tverd. Tela, No. 3, 48–64 (1992).

    Google Scholar 

  46. J. N. Reddy, “An evaluation of equivalent-single-layer and layerwise theories of composite laminates”, Compos. Struct.,25, 21–35 (1993).

    Google Scholar 

  47. E. Bertóti, “Stress-based hierarchic models for laminated composites”, Computer. Meth. Appl. Mech. Eng.,123, 327–353 (1995).

    Google Scholar 

  48. K. Rohwer, “Application of higher order theories to the bending analysis of layered composite plates”, Int. J. Sol. Struct.,29, No. 1, 105–119 (1992).

    Google Scholar 

  49. K. Rohwer, “Computational models for laminated composites”, Z. Flugwiss. Weltraumforsch.,17, 323–330 (1993).

    Google Scholar 

  50. J. N. Reddy, “A generalization of two-dimensional theories of laminated composite plates” Comm. Appl. Num. Meth.,3, 173–180 (1987).

    Google Scholar 

  51. J. Altenbach, W. Kissing, H. Altenbach, Dünwandige Stab- und Stabschalentragwerke, Vieweg, Braunschweig, Wiesbaden (1994).

    Google Scholar 

  52. V. A. Ignat'ev, O. L. Sokolov, J. Altenbach, and W. Kissing, Calculation of Thin-Walled Spatial Designs of Plate and Plate-Rod Structures [in Russian], Stroyizdat, Moscow (1996).

    Google Scholar 

  53. E. J. Barbero, J. N. Reddy, and J. Teply, “An accurate determination of stresses in thick laminates using a generalized plate theory”, Int. J. Numer. Meth. Eng.,29, 1–14 (1990).

    Google Scholar 

  54. J. N. Reddy, E. J. Barbero, and J. Teply, “A plate bending element based on a generalized laminate plate theory”, Int. J. Numer. Meth. Eng.,28, 2275–2292 (1989).

    Google Scholar 

  55. X. Lu and D. Liu, “An interlaminar shear stress continuity theory for both thin and thick composite laminates”, Trans. ASME. J. Appl. Mech.,59, No. 3, 502–509 (1992).

    Google Scholar 

  56. J. Teply, E. J. Barbero, and J. N. Reddy, “Bending, vibration and stability of Arall laminates using generalized laminate plate theory”, Int. J. Sol. Struct.,27, No. 5, 585–599 (1991).

    Google Scholar 

  57. E. J. Barbero and J. N. Reddy, “Modelling of delamination in composite laminates using a layer-wise plate theory”, Int. J. Sol. Struct.,28, No. 3, 373–388 (1991).

    Google Scholar 

  58. K. Bhaskar and T. K. Varadan, “Refinement of higher-order laminated theories”, AIAA J.,27, No. 12, 1830–1831 (1989).

    Google Scholar 

  59. J. M. Whitney and A. W. Leissa, “Analysis of heterogeneous anisotropic plates”, Trans. ASME. J. Appl. Mech.,36, No. 2, 261–266 (1969).

    Google Scholar 

  60. H. Altenbach, J. Altenbach, R. Rikards, Einführung in die Mechanik der Laminat- und Sandwichtragwerke. Deutscher Verlag für Grundstoffindustrie, Stuttgart (1996).

    Google Scholar 

  61. T. S. Chow, “On the propagation of flexural waves in an orthotropic laminated plate and its response to an impulsive load”, J. Compos. Mater.,5, 306–319 (1971).

    Google Scholar 

  62. N. F. Knight, Jr. and Y. Oi, “Restatement of first-order shear-deformation theory for laminated plates”, Int. J. Sol. Struct.,34, No. 4, 481–492 (1997).

    Google Scholar 

  63. R. D. Mindlin, “Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates”, Trans. ASME. J. Appl. Mech.,18, No. 2, 31–38 (1951).

    Google Scholar 

  64. Y. Oi Y. and N. F. Knight, Jr., “A refined first-order shear-deformation theory and its justification by plane-strain bending problem of laminated plates”, Int. J. Sol. Struct.,33, No. 1, 49–64 (1996).

    Google Scholar 

  65. E. Reissner, “A consistent treatment of transverse shear deformations in laminated anisotropic plates”, AIAA J.,10, No. 5, 716–718 (1972).

    Google Scholar 

  66. R. B. Rikards, A. K. Chate, and M. L. Kenzer, “Variants of averaging shear stiffness of laminated structures in calculation of natural frequencies according to the Timoshenko model”, Vopr. Dinam. Prochn.,52, 176–193 (1990).

    Google Scholar 

  67. S. Vlachoutsis, “Shear correction factors for plates and shells”, Int. J. Numer. Meth. Eng.,33, 1537–1552 (1992).

    Google Scholar 

  68. J. M. Whitney, “Shear correction factors for orthotropic laminates under static loads”, Trans. ASME. J. Appl. Mech.,37, No. 1, 302–304 (1970).

    Google Scholar 

  69. J. M. Whitney and C. T. Sun, “A higher order theory for extensional motion of laminated composites”, J. Sound Vibr.,30, No. 1, 85–97 (1973).

    Google Scholar 

  70. J. N. Reddy, “A refined nonlinear theory of plates with transverse shear deformation”, Int. J. Sol. Struct.,20, Nos. 9/10, 881–896 (1984).

    Google Scholar 

  71. J. N. Reddy and N. D. Phan, “Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory”, Int. J. Sol. Struct.,98, No. 2, 157–170 (1985).

    Google Scholar 

  72. Mallikarjuna and T. Kant, “A critical review and some results of recently developed refined theories of fibre-reinforced laminated composites and sandwiches”, Comp. Struct.,23, 293–312 (1993).

    Google Scholar 

  73. B. N. Phandya and T. Kant, “Higher-order shear deformable theories for flexure of sandwich plates—finite element evaluation”, Int. J. Sol. Struct.,24, No. 12, 1267–1286 (1988).

    Google Scholar 

  74. N. D. Phan and J. N. Reddy, “Analysis of laminated composite plates using higher-order shear deformation theory”, Int. J. Numer. Meth. Eng.,21, 2201–2219 (1985).

    Google Scholar 

  75. J. N. Reddy, “A simple higher-order theory for laminated composite plates”, Trans. ASME. J. Appl. Mech.,51, 745–752 (1984).

    Google Scholar 

  76. E. Reissner, “Note on the effect of transverse shear deformation in laminated anisotropic plates”, Comp. Meth. Appl. Mech. Eng.,20, 203–209 (1979).

    Google Scholar 

  77. H. Altenbach, “Eine nichlineare Theorie dünner Dreischichtschalen und ihre Anwendung auf die Stabilitätsuntersuchung eines dreischichtigen Streifens”, Techn. Mech.,3, No. 2, 23–30 (1982).

    Google Scholar 

  78. H. Altenbach, “Die Grundgleichungen einer linearen Theorie für dünne, elastische Platten und Scheiben mit inhomogenen Materialeigenschaften in Dickrichtung”, Techn. Mech.,5, No. 2, 51–58 (1984).

    Google Scholar 

  79. A. R. Atilgan and D. H. Hodges, “On the strain energy of laminated composite plates”, Int. J. Sol. Struct.,29, No. 20, 2527–2543 (1992).

    Google Scholar 

  80. V. G. Sutyrin and D. H. Hodges, “On asymptotically correct linear laminated plate theory”, Int. J. Sol. Struct.,33, No. 25, 3649–3671 (1996).

    Google Scholar 

  81. S. T. Mau, “A refined laminated plate theory”, Trans. ASME. J. Appl. Mech.,40, No. 2, 606–607 (1973).

    Google Scholar 

  82. K. H. Lee, N. R. Senthilnathan, S. P. Lim, and S. T. Chow, “An improved zig-zag model for the bending of laminated composite plates”, Compos. Struct.,15, 137–148 (1990).

    Google Scholar 

  83. K. H. Lee and L. A. Cao, “A predictor-corrector zig-zag model for the bending of laminated composite plates”, Int. J. Sol. Struct.,33, No. 6, 879–897 (1996).

    Google Scholar 

  84. M. Chow, “An efficient higher order composite plates theory for general lamination configurations”, AIAA J., 1496–1510 (1991).

  85. K. H. Lee, W. Z. Lin, and Chow S. T., “Bidirectional bending of laminated composite plates using an improved zig-zag model”, Compos. Struct.,28, 283–294 (1994).

    Google Scholar 

  86. X. Li and D. Liu, “Zigzag theory for composite laminates”, AIAA J.,33, No. 6, 1163–1165 (1994).

    Google Scholar 

  87. H. Murakami, “Laminated composite plate theory with improved in-plane responses”, Trans. ASME. J. Appl. Mech.,53, No. 3, 661–666 (1986).

    Google Scholar 

  88. E. Nast, “Flächentragwerkstheorie höherer Ordnung mit speziellen Ansatzfunktionen”, Techn. Mech.,14, Nos. 3/4, 203–212 (1994).

    Google Scholar 

Download references

Authors

Additional information

Martin Luther Universität, Halle-Wittenberg, Fachbereich Werkstoffwissenschaften, D-06099 Halle, Germany. Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 3, pp. 333–348, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altenbach, H. Theories for laminated and sandwich plates. Mech Compos Mater 34, 243–252 (1998). https://doi.org/10.1007/BF02256043

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256043

Keywords

Navigation