Skip to main content
Log in

Zusammenfassung

Siehe Abschnitt IV.

Summary

Occurrence of predominantly horizontal linear air currents in the ionosphere could be verified by direct and indirect electrical observations. The maximum of frequency of the measured wind velocities lies, within the range of 80 and 120 km altitude, at 60 m/sec and within theF-layer (200 to 350 km altitude) at 100 m/sec. The measured wind velocities do not show a uniform pattern. The standard deviation of the observations reaching several 100 per cent makes it probable that wind direction and speed depend on the hour of day and the season as well as on the geographical latitude and altitude. Considering particularly theF-layer the velocity of propagation of the deviation centers was found to be proportional to the earth-magnetic characteristic number. The extention of these deviation centers, however, does not depend on the intensity of the earth-magnetic disturbance and is nearly constant also in other respects. These more or less linear air currents are combined with a more or less turbulent movement. The direct and indirect observations verify this for the range between 80 and 100 km altitude; knowledge on the respective conditions in theF-layer, however, could not be obtained by them. The root of the average velocity square of all velocity components in the direction of the observations amounts to approximately 2 m/sec. The occurrence of solar and lunar tides in the range of theE-layer with a velocity amplitude of 35 and 25 m/sec respectively can be considered as a indisputable fact, whereas for theF-layer there exist too few investigations as yet.

Résumé

La présence de courants d'air essentiellement horizontaux dans l'ionosphère a été prouvée par des observations visuelles directes et électriques indirectes. Le maximum de fréquence des vitesses de vent mesurées se trouve dans la couche comprise entre 80 et 120 km, où elles atteignent 60 m/s, ainsi qu'au niveau de la coucheF (200–350 km) avec 100 m/s. Les directions observées ne fournissent pas d'image simple; la dispersion des mesures conduit à penser que les azimuts et les vitesses dépendent du moment du jour et de la saison, comme de la latitude et de l'altitude. En ce qui concerne la coucheF en particulier, il apparaît que la vitesse de déplacement des centres de dispersion est proportionnelle au nombre caractéristique géomagnétique. La grandeur de ces centres est toutefois indépendante de l'intensité de la perturbation géomagnétique et reste à peu près constante.

A ces courants ionosphériques plus ou moins linéaires se superpose un courant d'air plus ou moins turbulent; les observations directes et indirectes vérifient ce fait pour la couche comprise entre 80 et 120 km, mais elles ne peuvent rien dire à ce sujet en ce qui concerne la coucheF. La racine carrée du carré moyen des vitesses de toutes les composantes de vitesse dans la direction d'observation est égale à 2 m/s environ.

L'existence de marées solaires et lunaires dans la coucheE avec une amplitude des vitesses de respectivement 35 et 25 m/s peut être considérée comme assurée; les recherches analogues concernant la coucheF sont encore trop peu nombreuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literaturverzeichnis

  1. Havens, R. J. andH. Spitz: Atmospheric winds at 200 km. U. R. S. I.: Xth. Gen. Ass. Sydney 1952 Doc. A. G. 1952. No. 184 Comm. III.

  2. Bartels, J.: Geophysik. Heidelberg, 1944.

  3. Hoffmeister, C.: Die Meteore. Leipzig, 1937.

  4. Jesse, O.: Untersuchungen über die sogenannten leuchtenden Nachtwolken. Sitz.-Ber. Kgl. Preuß. Akad. Wiss. 1890 und 1891.

  5. Störmer, C.: Height and velocity of luminous night-clouds observed in Norway 1932. University Observatory Oslo, Publ. Nr. 6 (1933). Measurements of luminous night-clouds in Norway 1933 and 1934. Astrophysica Norwegia1, Nr. 3 (1935).

  6. Vestine, E. H.: Noctilucent clouds. J. Roy. Astron. Soc. Canada, 1934.

  7. Trowbridge, C. C.: The origin of luminous meteor trains. Popular Sci. Monthly, 1911.

  8. Krogness, O. andE. Tönsberg: Geophys. Publ.11 (1936), No. 8.

  9. Herlofson, N.: The theory of meteor ionization. Phys. Soc. Rep. Prog. Phys.11, 444–454 (1948).

    Google Scholar 

  10. Huxley, L. G. H.: Vortrag gehalten während der U. R. S. I. Xth. Gen. Ass. Sydney, 1952. Im Druck.

  11. Ratcliffe, J. A.: On the ionosphere and wave propagation. U. R. S. I.: Xth. Gen. Ass. Sydney 1952 Doc. A. G. 1952, No. 114, Comm. III.

  12. Prentice, J. P. M., A. C. B. Lovell andC. J. Banwell: Radio echo observations of meteors. Monthly Notices Roy. Astron. Soc.107, 155–163 (1947).

    Google Scholar 

  13. Ellyett, C. D.: The influence of high altitude winds on meteor trail ionization. Phil. Mag.41, 694–700 (1950).

    Google Scholar 

  14. Greenhow, J. S.: A radio echo method for the investigation of atmospheric winds at altitudes of 80–100 km. J. Atm. Terr. Phys.2, 282–291 (1952).

    Article  Google Scholar 

  15. Booker, H. G., J. A. Ratcliffe andD. H. Shinn: Diffraction from an irregular screen with applications to ionospheric problems. Phil. Trans. Roy. Soc. London A242, 579–609 (1950).

    Google Scholar 

  16. Hewish, A.: The diffraction of galactic radio waves as a method of investigating the irregular structure of the ionosphere. Proc. Roy. Soc. A214, 494–514 (1952).

    Google Scholar 

  17. Little, C. G. andA. Maxwell: Fluctuations in the intensity of radio waves from galactic sources. Phil. Mag. Ser. 7,42, 267–278 (1951).

    Google Scholar 

  18. —: Scintillation of radio stars during aurorae and magnetic storms. J. Atm. Terr. Phys.2, 356–360 (1952).

    Article  Google Scholar 

  19. Maxwell, A. andC. G. Little: A radio astronomical investigation of winds in the upper atmosphere. Nature169, 746 (1952).

    Google Scholar 

  20. Smith, F. G.: Ionospheric refraction of 81,5 Mc/s radio waves from radio stars. J. Atm. Terr. Phys.2, 350–355 (1952).

    Article  Google Scholar 

  21. Berkner, L. V., H. W. Wells andS. L. Seaton: Ionospheric effects associates with magnetic disturbances. Terr. Magn.44, 283–311 (1939).

    Google Scholar 

  22. Dieminger, W., G. Goubau undJ. Zenneck: Die Störungen der Ionosphäre. Hochfr. u. Elektroak.44, 2–17 (1934).

    Google Scholar 

  23. Mimno, H. R.: The physics of the ionosphere. Rev. mod. Phys.9, 1–43 (1937).

    Article  Google Scholar 

  24. Munro, G. H.: Irregularities in ionospheric reflections. U. R. S. I.: Xth. Gen. Ass. Sydney 1952 Doc. A. G. 1952, No. 275, Comm. III.

  25. Beynon, W. J. G.: Evidence of horizontal motion in regionF 2 ionization. Nature162, 887 (1948).

    Google Scholar 

  26. Gerson, N. C.: AbnormalE-Region ionization. U. R. S. I.: Xth. Gen. Ass. Sydney 1952 Doc. A. G. 1952, No. 193, Comm. III.

  27. Ratcliffe, J. A. andJ. L. Pawsey: A study of the intensity variations of downcoming wireless waves. Proc. Cambridge Phil. Soc.29, 301–318 (1933).

    Google Scholar 

  28. Krautkrämer, J.: Über Wanderungserscheinungen rascher Feldstärkeschwankungen von Ionosphärenechos. A. E. Ü.4, 133–138 (1950).

    Google Scholar 

  29. Mitra, S. N.: A radio method of measuring winds in the ionosphere. Proc. Inst. El. Eng.96, 441–446 (1949).

    Google Scholar 

  30. Chapman, J. H.: A study of winds in the ionosphere by radio methods. Canadian J. Physics31, 120–131 (1953).

    Google Scholar 

  31. Harvey, J. A.: Movement of sporadicE patches in the ionosphere. U. R. S. I.: Xth. Gen. Ass. Sydney 1952 Doc. A. G. 1952, No. 298, Comm. III.

  32. Briggs, B. H. andG. J. Phillips: A study of the horizontal irregularities of the ionosphere. Proc. Phys. Soc. B63, 907–923 (1950).

    Article  Google Scholar 

  33. Findlay, J. W.: An investigation of sudden radio fadeouts on a frequency near 2 Mc/s. J. Atm. Terr. Phys.1, 367–375 (1951).

    Article  Google Scholar 

  34. —: Moving clouds in regionE of the ionosphere. J. Atm. Terr. Phys.3, 73–78 (1953).

    Article  Google Scholar 

  35. Ratcliffe, J. A.: Diffraction from the ionosphere and the fading of radios waves. Nature162, 9–11 (1948).

    Google Scholar 

  36. Mitra, S. N.: Statistical Analysis of fading of a single downcoming wave from the ionosphere. Proc. Inst. El. Eng.96, 505–507 (1949).

    Google Scholar 

  37. Weekes, K.: The ground interference pattern of very-low-frequency radio waves. Proc. Inst. Electr. Eng.97, Part III, 100–107 (1950).

    Google Scholar 

  38. Bracewell, R. N., s.Ratcliffe, J. A.: Diffraction from the ionosphere and the fading of radio waves. Nature162, 9–11 (1948).

    Google Scholar 

  39. Martyn, D. F.: Cellulor atmosphere waves in the ionosphere and troposphere. Proc. Roy. Soc. A201, 215–233 (1950).

    Google Scholar 

  40. Royal Astronomical Society, London: Winds and turbulence in the upper atmosphere. Nature167, 626 (1951).

    Google Scholar 

  41. Greenstone, R.: Systematic ionospheric winds. U. R. S. I.: Xth. Gen. Ass. Sydney 1952 Doc. A. G. 1952, No. 155.

  42. Millman, G. H.: Ionospheric wind measurements at 150 kc/s. U. R. S. I.: Xth. Gen. Ass. Sydney 1952 Doc. A. G. 1952, No. 166, Comm. III.

  43. Störmer, C.: Measurements of luminous night-clouds in Norway 1933 and 1934. Astrophysica Norwegica1, Nr. 3 (1935).

  44. —: The meteor train of March 24, 1935. Astrophysica Norwegica3, 117–138 (1939).

    Google Scholar 

  45. McKinley, D. W. R., P. M. Millman andS. C. D. Ellyett: The influence of high altitude winds on meteor ionization. Phil. Mag.41, 694–700 (1950).

    Google Scholar 

  46. Ligda, M. G. H.: Seasonal variations of high level wind directions studied by long enduring meteor trains. U. R. S. I.: Xth. Gen. Ass. Sydney 1952 Doc. A. G. 1952, No. 186, Comm. III.

  47. Manning, L. A. andA. M. Peterson: Meteoric echo measurement of ionospheric drift and turbulence. U. R. S. I.: Xth. Gen. Ass. Sydney 1952 Doc. A. G. 1952, No. 168, Comm. III.

  48. Munro, G. H.: Travelling disturbances in the ionosphere: Diurnal variation of direction. Nature171, 693–694 (1953).

    Google Scholar 

  49. Little, C. G. andA. Maxwell: Scintillation of radio stars during aurorae and magnetic storms. J. Atm. Terr. Phys.2, 356–360 (1952).

    Article  Google Scholar 

  50. —: Fluctuations in the intensity of radio waves from galactic sources. Phil. Mag. Ser. 7,42, 267–278 (1951).

    Google Scholar 

  51. Bramley, E. N., s. Royal Astronomical Society: Winds and turbulence in the upper atmosphere. Nature167, 626 (1951).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit 6 Textabbildungen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, W. Winde und turbulente Luftströmungen in der Ionosphäre. Arch. Met. Geoph. Biokl. A. 6, 417–439 (1954). https://doi.org/10.1007/BF02247006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02247006

Navigation