Skip to main content
Log in

Comparison of the effects of mianserin and its enantiomers and metabolites on a behavioral screen for antidepressant activity

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The behavioral effects of racemic mianserin, its (+) and (−) enantiomers, and its metabolites desmethylmianserin and 8-hydroxymianserin were evaluated on the differential-reinforcement-of-low-rate 72-s (DRL 72-s) schedule, a screen known to be sensitive to and specific for the antidepressant properties of drugs. Racemic mianserin produced the antidepressant-like effect (increased reinforcement rate, decreased response rate) at 5 and 10 mg/kg. The mianserin enantiomers showed the antidepressant-like effect beginning at lower doses [(+) mianserin; 0.6 mg/kg; (−) mianserin: 2.5 mg/kg]. The mianserin metabolites showed no clear dose-related effect at doses up to 10 mg/kg. It is concluded that the antidepressant-like effects of mianserin are due to the activity of the parent compound rather than to its metabolites, and that they may be primarily attributable to the (+) enantiomer. The greater potency of (+)-mianserin may be related to its higher affinity for the 5-HT2 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baumann PA, Maitre L (1977) Blockade of presynaptic alpha receptors and of amine uptake in the rat brain by the antidepressant mianserin. Naunyn-Schmiedebergs Arch Pharmacol 300:31–37

    Article  PubMed  Google Scholar 

  • Britton KT, Koob GF (1989) Effects of corticotropin releasing factor, desipramine and haloperidol on a DRL schedule of reinforcement. Pharmacol Biochem Behav 32:967–970

    Article  PubMed  Google Scholar 

  • Conn PJ, Sanders-Bush E (1986) Regulation of serotonin-stimulated phosphoinositide hydrolysis: relation to the serotonin 5-HT2 binding site. J Neurosci 6:3669–3675

    PubMed  Google Scholar 

  • Conn PJ, Sanders-Bush E, Hoffman BJ, Hartig PR (1986) A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover. Proc Nat Acad Sci USA 83:4086–4088

    PubMed  Google Scholar 

  • Danysz W, Plazni A, Kostowski W, Malatynska E, Jarbe TUC, Hiltunen AJ, Archer T (1988) Comparison of desipramine, amitriptyline, zimelidine and alaproclate in six animal models used to investigate antidepressant drugs. Pharmacol Toxicol 62:42–50

    PubMed  Google Scholar 

  • Dumbrille-Ross A, Tang SW, Seeman P (1980) High affinity binding of [3H]mianserin to rat cerebral cortex. Eur J Pharmacol 68:395–396

    Article  PubMed  Google Scholar 

  • Fell PJ, Quantock DC, van der Burg WJ (1973) The human pharmacology of GB 94-A new psychotropic agent. Eur J Clin Pharmacol 5:161–173

    Article  Google Scholar 

  • Ghose K, Coppen A, Turner P (1976) Autonomic actions and interactions of mianserin hydrochloride (Org GB 94) and amitriptyline in patients with depressive illness. Psychopharmacology 49:201–204

    Article  PubMed  Google Scholar 

  • Hoppenbrowers ML, Gelders Y, Vanden Bussche G (1986) Ritan-serin (R 55667) an original thymosthenic. Bull Chim Farm 125:136S-147S

    Google Scholar 

  • Howard JL, Pollard GT (1984) Effects of imipramine, bupropion, chlorpromazine and clozapine on differential-reinforcement-of-low-rate (DRL)>72-s and >36-s schedules in rat. Drug Dev Res 4:607–616

    Article  Google Scholar 

  • Howard JL, Soroko FE, Cooper BR (1981) Empirical behavioral models of depression with emphasis on tetrabenazine antagonism. In: Enna SJ et al. (eds) Antidepressants: neurochemical, behavioral and clinical perspectives. Raven Press, New York, pp 107–120

    Google Scholar 

  • Itil TM (1981) The discovery of psychotropic drugs by computeranalyzed cerebral biopotentials (CEEG). Drug Dev Res 1:373–407

    Article  Google Scholar 

  • Jancsar SM, Leonard BE (1984) The effect of (±)mianserin and its enantiomers on the behavioral hyperactivity of the olfactory-bulbectomized rat. Neuropharmacology 23:1065–1070

    Article  PubMed  Google Scholar 

  • Jongh GD de, Wildenberg HM, van de, Nieuwenhuyse H, Veen F van der (1981) The metabolism of mianserin in women, rabbits and rats. Identification of the major urinary metabolites. Drug Metab Dispos 9:48–53

    PubMed  Google Scholar 

  • Kennett GA, Curzon G (1988) Evidence that mCPP may have behavioral effects mediated by central 5-HT1C receptors. Br J Pharmacol 94:137–147

    PubMed  Google Scholar 

  • Kennett GA, Whitton P, Shah K, Curzon G (1989) Anxiogenic-like effects of mCPP and TFMPP in animal models are opposed by 5-HT1C receptor antagonists. Eur J Pharmacol 164:445–454

    Article  PubMed  Google Scholar 

  • Leonard BE (1974) Some effects of a new tetracyclic antidepressant compound, Org GB 94, on the metabolism of monoamines in the rat bain. Psychopharmacologia 36:221–236

    Article  PubMed  Google Scholar 

  • Leysen JE, Niemegeers CJE, Van Nueten JM, Laduron PM (1982) Ketanserin (R 41 468), a selective3H-ligand for serotonin2 receptor binding sites. Mol Pharmacol 21:301–314

    PubMed  Google Scholar 

  • Li AA, Marek GJ, Vosmer G, Seiden LS (1989) Long-term central 5-HT depletions resulting from repeated administration of MDMA enhances the effects of single administration of MDMA on schedule-controlled behavior of rats. Pharmacol Biochem Behav 33:641–648

    Article  PubMed  Google Scholar 

  • Li AA, Marek GJ, Hand TH, Seiden LS (1990) Antidepressant-like effects of trazodone on a behavioral screen are mediated by trazodone, not the metabolite m-chlorophenylpiperazine. Eur J Pharmacol 277:137–144

    Article  Google Scholar 

  • Luttinger D, Freedman M, Hamel L, Ward SJ, Perrone M (1985) The effects of serotonin antagonists in a behavioral despair procedure in mice. Eur J Pharmacol 1097:53–58

    Google Scholar 

  • Maitre L, Bouman PA, Jackel J, Waldmeier PC (1982) 5-HT uptake inhibitors: psychopharmacological and neurobiological criteria of selectivity. In: Ho BT et al. (eds) Serotonin in biological psychiatry. Raven Press, New York

    Google Scholar 

  • Maj J, Sowinska H, Baran L, Gancarczyk L, Rawlow A (1978) The central antiserotonergic action of mianserin. Psychopharmacology 59:79–84

    Article  PubMed  Google Scholar 

  • Marek GJ, Seiden LS (1988a) Effects of selective 5-hydroxytryptamine-2 and nonselective 5-hydroxytryptamine antagonists on the differential-reinforcement-of-low-rate 72-sec schedule. J Pharmacol Exp Ther 244:650–658

    PubMed  Google Scholar 

  • Marek GJ, Seiden LS (1988b) Selective inhibition of MAO-A not MAO-B results in antidepressant-like effects on DRL 72-s behavior. Psychopharmacology 96:153–160

    Article  PubMed  Google Scholar 

  • Marek GJ, Li A, Seiden LS (1988) Antidepressant-like effects of (+)-oxaprotiline on a behavioral screen. Eur J Pharmacol 157:183–188

    Article  PubMed  Google Scholar 

  • Marek GJ, Li AA, Seiden LS (1989a) Selective 5-hydroxytryptamine-2 antagonists have antidepressant-like effects on the differential-reinforcement-of-low-rate 72-s schedule. J Pharmacol Exp Ther 250:52–59

    PubMed  Google Scholar 

  • Marek GJ, Li A, Seiden LS (1989b) Evidence for involvement of 5-hydroxytryptamine1 receptors in antidepressant-like drug effects on differential-reinforcement-of-low-rate 72-s behavior. J Pharmacol Exp Ther 250:60–71

    PubMed  Google Scholar 

  • Nickolson VJ, Wieringa JH, Delft AML van (1982) Comparative pharmacology of mianserin, its main metabolites and 6-azamianserin. Naunyn Schmiedeberg's Arch Pharmacol 319:48–55

    Article  Google Scholar 

  • O'Donnell JM (1987) Effects of clenbuterol and prenalterol on performance during differential-reinforcement-of-low-rate response rate in the rat. J Pharmacol Exp Ther 241:68–75

    PubMed  Google Scholar 

  • O'Donnell JM, Seiden LS (1982) Effects of monoamine oxidase inhibitors on performance during differential reinforcement of low response rate. Psychopharmacology 78:214–218

    Article  PubMed  Google Scholar 

  • O'Donnell JM, Seiden LS (1983) Differential-reinforcement-of-low-rate 72-second schedule: selective effects of antidepressant drugs. J Pharmacol Exp Ther 224:80–88

    PubMed  Google Scholar 

  • Peroutka SJ, Snyder S (1981) [3H]Mianserin: differential labeling of serotonin2 and histamine1 receptors in rat brain. J Pharmacol Exp Ther 216:142

    PubMed  Google Scholar 

  • Pinder RM (1985) Adrenoceptor interactions of the enantiomers and metabolites of mianserin: are they responsible for the anti-depressant effect? Acta Psychiatr Scand 72 [suppl 320]:1–9

    PubMed  Google Scholar 

  • Pinder RM, Fink M (1982) Pharmacological aspects of mianserin Acta Psychiatr Scand Suppl 302:59–71

    Google Scholar 

  • Pinder RM, van Delft AML (1983) The potential therapeutic role of the enantiomers and metabolites of mianserin. Br J Clin Pharmacol 15:269S-276S

    PubMed  Google Scholar 

  • Pollard GT, Howard JL (1986) Similar effects of antidepressant and non-antidepressant drugs on behavior under an interresponse-time >72-s schedule. Psychopharmacology 89:253–258

    Article  PubMed  Google Scholar 

  • Porsolt RD, LePichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  PubMed  Google Scholar 

  • Randrup A, Braestrup C (1977) Uptake inhibition of biogenic amines by newer antidepressant drugs. Psychopharmacologia 53:309–314

    Article  Google Scholar 

  • Richelson E (1979) Tricyclic antidepressants and histamine H1 receptors. Mayo Clin Proc 54:669–674

    PubMed  Google Scholar 

  • Sanders-Bush E, Breeding M, Roznoski M (1987) 5-HT2 binding sites after mianserin: comparison of loss of sites and brain levels of drug. Eur J Pharmacol 133:199–204

    Article  PubMed  Google Scholar 

  • Sanders-Bush E, Breeding M, Knoth K Tsutsumi M (1989) Sertraline-induced desensitization of the serotonin 5-HT2 receptor transmembrane signaling system. Psychopharmacology 99:64–69

    Article  PubMed  Google Scholar 

  • Sanger DJ (1988) The alpha2-adrenoceptor antagonists idazoxan and yohimbine increase rates of DRL responding in rats. Psychopharmacology 95:413–417

    Article  PubMed  Google Scholar 

  • Schoemaker H, Berendsen HHG, Stevens HJV, Nickolson VJ (1981) Differences in presynaptic alpha-blockade, noradrenaline uptake inhibition and potential antidepressant activity between (+)- and (−)-mianserin. Psychopharmacology 74:137–142

    Article  PubMed  Google Scholar 

  • Seiden LS, Dahms JL, Shaughnessy RA (1985) Behavioral screen for antidepressants: the effects of drugs and electroconvulsive shock on performance under a differential-reinforcement-of-low-rate schedule. Psychopharmacology 86:55–60

    Article  PubMed  Google Scholar 

  • Snapper AG, Stephens KR, Cobez RI, Van Haaren FC (1976) The SKED software systems: OS8 and time share. State Systems, Kalamazoo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hand, T.H., Marek, G.J. & Seiden, L.S. Comparison of the effects of mianserin and its enantiomers and metabolites on a behavioral screen for antidepressant activity. Psychopharmacology 105, 453–458 (1991). https://doi.org/10.1007/BF02244363

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02244363

Key words

Navigation