Skip to main content
Log in

Vortex phase transitions in 21/2 dimensions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A phase diagram is mapped out for a “21/2”-dimensional vortex lattice model in which vortex filaments lie in a plane, while both the velocity field and the Green function are three-dimensional. Both positive and negative temperatures are considered. Various qualitative properties of turbulent states and of the super-fluid λ transition are well verified within the limitations of the model; the percolation properties of vortex transitions are exhibited; the differences between superfluid and classical vortex motion are highlighted, as is the importance of topological constraints in vortex dynamics; an earlier model of intermittency is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. G. Williams,Phys. Rev. Lett. 59:1926 (1987).

    Google Scholar 

  2. S. R. Shenoy,Phys. Rev. B 40:5056 (1989).

    Google Scholar 

  3. A. J. Chorin,Commun. Math. Phys. 141:619 (1991).

    Google Scholar 

  4. A. J. Chorin,Vorticity and Turbulence (Springer, New York, 1994).

    Google Scholar 

  5. A. J. Chorin,J. Stat. Phys. 69:67 (1992).

    Google Scholar 

  6. A. J. Chorin,J. Comput. Phys. 107:1 (1993).

    Google Scholar 

  7. B. Chattopadhyay, M. Mahato, and S. Shenoy, Vortex loop crinkling in the three-dimensionalXY model: Numerical evidence in support of an ansatz,Phys. Rev. B, in press.

  8. A. J. Chorin,Commun. Pure Appl. Math. 39 (Spec. Iss.):S47 (1986).

    Google Scholar 

  9. J. Epiney, 3DXY model near criticality, Diploma Thesis, ETH, Zurich (1990).

    Google Scholar 

  10. R. Savit,Rev. Mod. Phys. 52:453 (1980).

    Google Scholar 

  11. G. Kohring and R. Shrock,Nucl. Phys. B 288:397 (1987).

    Google Scholar 

  12. L. Landau and E. Lifshitz,Statistical Physics, 3rd ed., Part 1 (Pergamon Press, New York, 1980).

    Google Scholar 

  13. L. Onsager,Nuovo Cimento (Suppl.)6:279 (1949).

    Google Scholar 

  14. G. L. Eyink and H. Spohn,J. Stat. Phys. 70:833 (1993).

    Google Scholar 

  15. P. G. de Gennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1971).

    Google Scholar 

  16. N. Madras and A. Sokal,J. Stat. Phys. 50:109 (1988).

    Google Scholar 

  17. H. Lamb,Hydrodynamics (Dover, New York, 1932).

    Google Scholar 

  18. A. J. Chorin,Commun. Math. Phys. 114:167 (1988).

    Google Scholar 

  19. J. Kosterlitz and D. J. Thouless,J. Phys. C: Solid State Phys. 6:1181 (1973).

    Google Scholar 

  20. A. J. Chorin and J. Akao,Physica D 52:403 (1991).

    Google Scholar 

  21. J. Akao, Scaling relations for fractal objects, Department of Mathematics, University of California, Berkeley, California (1993).

    Google Scholar 

  22. A. J. Chorin,Phys. Rev. Lett. 60:1947 (1988).

    Google Scholar 

  23. D. Callaway,Contemp. Phys. 26:1, 95 (1985).

    Google Scholar 

  24. D. Tilley and J. Tilley,Superfluidity and Superconductivity (Adam Hilger, Bristol, 1986).

    Google Scholar 

  25. O. Hald,SIAM J. Num. Anal. 16:726 (1979).

    Google Scholar 

  26. J. T. Beale and A. Majda,Math. Comp. 39:1 (1982).

    Google Scholar 

  27. B. I. Halperin,Statistical Mechanics of Topological Defects, Les Houches 1980 Lectures Notes (North-Holland, Amsterdam, 1981).

    Google Scholar 

  28. T. Buttke, Lagrangian numerical methods which preserve the Hamiltonian structure of incompressible fluid flow,Commun. Pure Appl. Math., in press.

  29. V. I. Oseledets,Russ. Math. Surv. 44:210 (1989).

    Google Scholar 

  30. P. H. Roberts,Mathematica 19:169 (1972).

    Google Scholar 

  31. A. J. Chorin and J. Marsden,A Mathematical Introduction to Fluid Mechanics (Springer-Verlag, Berlin, 1979, 1990, 1992).

    Google Scholar 

  32. T. Grossman and A. Aharony,J. Phys. A 20:L1193 (1987).

    Google Scholar 

  33. A. G. Bershadski,Usp. Fiz. Nauk 160:189 (1989);Sov. Phys. Usp. 33:1073 (1990).

    Google Scholar 

  34. A. Coniglio, N. Jan, I. Majid, and H. E. Stanley,Phys. Rev. B 35:3617 (1987).

    Google Scholar 

  35. H. Saleur and B. Duplantier,Phys. Rev. Lett. 58:2325 (1987).

    Google Scholar 

  36. A. J. Chorin,J. Comput. Phys. 91:1 (1990).

    Google Scholar 

  37. H. Hall and W. Vinen,Proc. R. Soc. Lond. A 238:215 (1956).

    Google Scholar 

  38. K. Schwartz,Phys. Rev. Lett. 49:283 (1982).

    Google Scholar 

  39. T. Buttke,J. Comput. Phys. 76:301 (1988).

    Google Scholar 

  40. t. Buttke,Phys. Rev. Lett. 59:2117 (1987).

    Google Scholar 

  41. R. Klein and A. Majda,Physica D 49:323–352 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chorin, A.J. Vortex phase transitions in 21/2 dimensions. J Stat Phys 76, 835–856 (1994). https://doi.org/10.1007/BF02188688

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02188688

Key Words

Navigation