Skip to main content
Log in

Azolla and other plant-cyanobacteria symbioses: Aspects of form and function

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Nostoc, a genus of filamentous, heterocystous, cyanobacteria, is widely distributed in the free-living state. It is also the most common phycobiont in N2-fixing lichens and occurs as the N2-fixing symbiont in a small and diverse group of green plants. These include several bryophyte genera (e.g. Anthoceros and Blasia), a pteridophyte genus (Azolla; while the symbiont is referred to asAnabaena azollae, it may be aNostoc spp.), a division of gymnosperms (the 10 cycad genera) and one angiosperm genus (Gunnera). In Gunnera the Nostoc apparently penetrates into the cells of the host. In the other associations Nostoc is extracellular but specific morphological modifications and/or structures of the host plant organs create an environment which fosters interaction and metabolite interchange.

The individual group of Nostoc-green plant symbioses other than Azolla are summarized in regard to the current understanding of their establishment, perpetuation, and host-symbiont interaction. This includes available information on recognition and specificity, mode(s) of infection if applicable, and a synopsis of morphological modifications of the partners. The symbiosis withAzolla is then addressed separately with a more indepth account of the foregoing areas. In addition, the concept ofAzolla harboring a dominant, obiligately symbiotic Nostoc which has not been cultured as well as minor symbionts capable of free-living growth, the distinction between re-constituting and simply re-establishing the symbiosis, and current approaches to improving the symbiosis and to authenticating the establishment of new associations are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Becking J H 1987 Endophyte transmission and activity in theAnabaena-Azolla association. Plant and Soil 100, 183–212.

    Google Scholar 

  • Bergersen F J, Kennedy G S and Wittman W 1965 Nitrogen fixation in the coralloid roots ofMacrozamia communis L. Johnson. Aust. J. Biol. Sci. 18, 1135–1142.

    Google Scholar 

  • Berliner M D and Fisher R W 1987 Surface lectin binding toAnabaena variabilis and to cultured and freshly isolatedAnabaena azollae. Curr. Microbiol. 16, 149–152.

    Google Scholar 

  • Bonnett H T 1990 TheNostoc-Gunnera association.In Handbook of Symbiotic Cyanobacteria. Ed. A NRai. pp 161–171. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Bonnett H T and Silvester W B 1981 Specificity in theGunnera-Nostoc endosymbiosis. New Phytol. 89, 121–128.

    Google Scholar 

  • Braun-Howland E B, Lindblad P and Nierzwicki-Bauer S A, Bergman B 1988 Dinitrogenase reductase (Fe-protein) of nitrogenase in the cyanobacterial symbionts of threeAzolla: Localization and sequence of appearance during heterocyst differentiation. Planta 176, 319–332.

    Google Scholar 

  • Braun-Howland E B and Nierzwicki-Bauer S A 1990Azolla-Anabaena, symbiosis: Biochemistry, ultrastructure, and molecular biology.In Handbook of Symbiotic Cyanobacteria. Ed. A NRai, pp 65–117. CRC Press, Boca Raton. FL.

    Google Scholar 

  • Calvert H E, Pence M K and Peters G A 1985 Ultrastructural ontogeny of leaf eavity trichomes inAzolla implies a functional role in metabolite exchange. Protoplasma 129, 10–27.

    Google Scholar 

  • Calvert H E, Perkins S K and Peters G A 1983 Sporocarp structure in the heterosporous water fernAzolla mexicana Presl. Scanning Electron Microsc. 3, 1499–1510.

    Google Scholar 

  • Calvert H E, Perkins S K and Peters G A 1985 Involvement of epidermal trichomes in the continuity of theAzolla-Anabaena symbiosis throught theAzolla life cycle. Am. J. Bot. 72, 808 (Abstr.)

    Google Scholar 

  • Calvert H E and Peters G A 1981 TheAzolla Anabaena relationship. IX. Morphological analysis of leaf cavity hair populations. New Phytol. 89, 327–335.

    Google Scholar 

  • Campbell D H 1893 On the development ofAzolla filiculoides. Lam. Ann. Bot. 26, 155–187.

    Google Scholar 

  • Campbell E L and Meeks J C 1989 Characteristies of hormogonia formation by symbioticNostoc spp. in response to the presence ofAnthoceros punctatus or its extracellular products. Appl. Environ. Microbiol. 55, 125–131.

    Google Scholar 

  • Duckett J G, Prasad A K S K, Davies D A and Walker S 1977 A cytological analysis of theNostoc-bryophyte relationship. New Phytol. 78, 349–362.

    Google Scholar 

  • Dunham D G and Fowler K 1987 Megaspore germination, embryo development and maintenance of the symbiotic association inAzolla filiculoides Lam. Bot. J. Linnean Soc. 95, 43–53.

    Google Scholar 

  • Enderlin C S and Meeks J C 1983 Pure culture and reconstitution of theAnthoceros-Nostoc symbiotic associations. Planta 158, 156–165.

    Google Scholar 

  • Franche C and Cohen-Bazire G 1985 The structuralnif genes of four symbioticAnabaena azollae show a highly conserved physical arrangement. Plant Sci. 39, 125–131.

    Google Scholar 

  • Franche C and Cohen-Bazire G 1987 Evolutionary divergence in thenif Ph.D.K. gene region among nine symbioticAnabaena azollae and betweenAnabaena azollae and some free-living heterocystous cyanobacteria. Symbiosis 3, 159–178.

    Google Scholar 

  • Gates J E and Fisher R W, Goggin T W, Azrolon N I 1980 Antigenetic differences betweenAnabaena azollae fresh from theAzolla fern leaf cavity and free-living cyanobacteria. Arch. Microbiol. 128, 126–129.

    Google Scholar 

  • Grandall U and Holfsten A V 1976 Nitrogenase activity in relation to intracellular organisms inSphagnum mosses. Physiol. Plant. 36, 88–94.

    Google Scholar 

  • Grilli Cailoa M 1980 On the phycobionts of the cycad coralloid roots. New Phytol. 85, 537–544.

    Google Scholar 

  • Grobbelaar N, Scott W E, Hattingh W and Marshall J 1987 The identification of the coralloid root endophytes of the southern African cycads and the ability of the isolates to fix dinitrogen. S. Afr. J. Bot. 53, 111–118.

    Google Scholar 

  • Grobbelaar N, Small J G C, Marshall J and Hattingh W 1984 Metabolic studies of the coralloid roots ofEncephalartos transvenosus and its endophyte.In Advances in Nitrogen Fixation Research. Eds. CVeeger and W ENewton. p. 54. Martinus Nijhoff, The Hague, The Netherlands.

    Google Scholar 

  • Hill D J 1975 The pattern of development ofAnabaena in theAzolla-Anabaena symbiosis. Planta 122, 179–184.

    Google Scholar 

  • Hill D J 1977 The role ofAnabaena in theAzolla-Anabaena symbiosis. New Phytol. 78, 611–616.

    Google Scholar 

  • Hill D J 1989 The control of the cell cycle in microbial symbionts. New Phytol. 112, 175–184.

    Google Scholar 

  • Joseph C M and Meeks J C 1987 Regulation of expression of glutamine synthetase in a symbioticNostoc strain associated withAnthoceros punctatus. J. Bacteriol. 169, 2471–2475.

    PubMed  Google Scholar 

  • Kaplan D, Calvert H E and Peters G A 1986 Nitrogenase activity and phycobiliproteins of the endophyte as a function of leaf age and cell type. Plant Physiol. 80, 884–890.

    Google Scholar 

  • Kaplan D and Peters G A 1981 TheAzolla-Anabaena relationship. X.15N2, fixation and transport in main stem axes. New Phytol. 89, 337–346.

    Google Scholar 

  • Kaplan D and Peters G A 1988 Interaction of carbon metabolism in theAzolla-Anabaena symbiosis. Symbiosis 6, 53–68.

    Google Scholar 

  • Kobiler D, Cohen-Sharon A and Tel-Or E 1981 Recognition between the N2-fixingAnabaena and the water fernAzolla. FEBS Lett. 133, 157–160.

    Google Scholar 

  • Konar R N and Kapoor R K 1974 Embryology ofAzolla pinnata. Phytomorphology 22, 211–233.

    Google Scholar 

  • Ladha J K and Watanabe I 1982 Antigenic similarity amongAnabaena azollae separated from different species ofAzolla. Biochem. Biophys. Res Comm. 109, 675–682.

    PubMed  Google Scholar 

  • Ladha J K and Watanabe I 1984 Antigenetic analysis ofAnabaena azollae and the role of lectin in theAzolla-Anabaena symbiosis. New Phytol. 98, 295–300.

    Google Scholar 

  • Lee K Y, Joseph C M and Meeks J C 1988 Glutamine synthetase specific activity and protein concentration in symbioticAnabaena associated withAzolla caroliniana. Antonie van Leewenhoek 54, 345–355.

    Google Scholar 

  • Leizerovitch L, Fleminger N, Kardisch N, Frensdorff A and Galun M 1988 Polyphenols, and not lectins, are responsible for haemagglutinating activity in extracts of Azolla filiculoides Lam. Symbiosis 5, 209–221.

    Google Scholar 

  • Leizerovitch I, Kardish N and Galun M 1990 Comparison between eight symbiotic, culturedNostoc isolates and a free-livingNostoc by Recombinant DNA. Symbiosis 8, 75–85.

    Google Scholar 

  • Lin C and Watanabe I 1988 Study on the association betweenAnabaena azollae andAzolla microphylla during the germination of megasporocarps. Symbiosis 5, 199–208.

    Google Scholar 

  • Lin C and Watanabe I 1988 A new method for obtainingAnabaena-freeAzolla. New Phytol. 108, 341–344.

    Google Scholar 

  • Lin C, Watanabe I, Liu C C, Zheng D-Y and Tang L F 1988 Reestablishment of symbiosis toAnabaena-freeAzolla.In Nitrogen Fixation: Hundred Years After. Eds. HBothe, N JdeBruijn and W ENewton. pp 223–227. Gustav Fischer, Stuttgart, Germany.

    Google Scholar 

  • Lindblad P and Bergman B 1986 Glutamine synthetase: Activity and localization in cyanobacteria of the cycadsCycas revoluta andZamia skinneri. Planta 169, 1–7.

    Google Scholar 

  • Lindblad P and Bergman B 1989 Occurrence and localization of phycoerythrin in symbioticNostoc ofCycas revoluta and in the free-living isolatedNostoc 7422. Plant Physiol. 89, 783–785.

    Google Scholar 

  • Lindblad P and Bergman B 1990 The cycad-cyanobacteria symbiosis.In Handbook of Symbiotic Cyanobacteria. Ed. A NRai. pp 137–159. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Lindblad P, Bergman B, v.Hofsten A, Hallbom L and Nylund J E 1985 The cyanobacterium-Zamia symbiosis: An ultrastructural study. New Phytol. 101, 707–716.

    Google Scholar 

  • Lindblad P, Hallbom L and Bergman B 1985 The cyanobacteriumZamia symbiosis: C2H2-reduction and heterocyst frequency. Symbiosis 1, 19–28.

    Google Scholar 

  • Lindblad P, Haselkorn R, Bergman B and Nierzwicki-Bauer S A 1989 Comparison of DNA restriction fragment length polymorphisms ofNostoc strains in and from cycads. Arch. Microbiol. 152, 20–24.

    PubMed  Google Scholar 

  • Lindblad P, Rai A R and Bergman B 1987 TheCycas revoluta-Nostoc symbiosis: Enzyme activities of nitrogen and carbon metabolism in the cyanobiont. J. Gen. Microbiol. 133, 1695–1699.

    Google Scholar 

  • Lynn D G and Chang M 1990 Phenolic signals in cohabitation: Implications for plant development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 497–526.

    Google Scholar 

  • McCowen S W, MacArthur L and Gates J E 1987Azolla fern lectins that specifically recognize endosymbiotic cyanobacteria. Curr. Microbiol. 14, 329–333.

    Google Scholar 

  • Meeks J C 1990 Cyanobacterial-bryophyte association.In Handbook of Symbiotic Cyanobacteria. Ed. A NRai. pp 43–63. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Meeks J C, Enderlin C S, Joseph C M, Chapman J S and Lollar M W L 1985 Fixation of [13N]N2 and transfer of fixed nitrogen in theAnthoceros-Nostoc symbiotic association. Planta 164, 406–414.

    Google Scholar 

  • Meeks J C, Enderlin C S, Wycoff K L, Chapman J S and Joseph C M 1983 Assimilation of13NH4 + by Anthoceros grown with and without symbiotic Nostoc. Planta 158, 384–391.

    Google Scholar 

  • Meeks J C, Joseph C M and Haselkorn R 1988 Organization of thenif genes in cyanobacteria in symbiotic association withAzolla andAnthoceros. Arch. Microbiol. 150, 61–71.

    PubMed  Google Scholar 

  • Meeks J C, Steinberg N A, Enderlin C S, Joseph C M and Peters G A 1987Azolla-Anabaena relationship. XIII. Fixation of [13N]N2. Plant Physiol. 83, 883–886.

    Google Scholar 

  • Meeks J C, Steinberg N S, Joseph C M, Enderlin C S, Jorgensen P A and Peters G A 1985 Assimilation of exogenous and dinitrogen derived13NH4 byAnabaena azollae separated fromAzolla caroliniana Willd. Arch. Microbiol. 142, 229–233.

    Google Scholar 

  • Milindasuta B-I 1975 Developmental anatomy of coralloid roots in cycads. Am. J. Bot. 62, 468–472.

    Google Scholar 

  • Nathanielsz C P and Staff I A 1975 A mode of entry of blue-green algae into the apogeotropic roots ofMacrozamia communis. Am. J. Bot. 62, 232–235.

    Google Scholar 

  • Nierzwicki-Bauer S A 1990Azolla-Anabaena symbiosis: Use in agriculture.In Handbook of Symbiotic Cyanobacteria. Ed. A NRai, pp 119–136. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Nierzwicki-Bauer S A, Aulfinger H and Braun-Howland E B 1989 Ultrastructural characterization of an inner envelope that confinesAzolla endosymbionts to the leaf cavity perifery. Can. J. Bot. 67, 2711–2719.

    Google Scholar 

  • Nierzwicki-Bauer S A and Haselkorn R 1986 Difference in mRNA levels inAnabaena living freely or in symbiotic association withAzolla. EMBO J. 5, 29–35.

    PubMed  Google Scholar 

  • Obukowicz M, Schaller M and Kennedy G S 1981 Ultrastructure and phenolic histochemistry of theCycas revoluta-Anabaena symbiosis. New Phytol. 87, 751–759.

    Google Scholar 

  • Orr J and Haselkorn R 1982 Regulation of glutamine synthetase activity and synthesis in free-living and symbioticAnabaena spp. J Bacteriol. 152, 625–635.

    Google Scholar 

  • Osborne B A 1989 Comparison of photosynthesis and productivity ofGunnera tinctoria Molina (Mirbel) with and without the phycobiontNostoc punctiforme L. Plant Cell Environ. 12, 941–946.

    Google Scholar 

  • Pate J S, Lindblad P and Atkins C A 1988 Pathways of assimilation and transfer of fixed nitrogen in coralloid roots of cycad-Nostoc symbioses. Planta 176, 461–471.

    Google Scholar 

  • Perraju B T V V, Rai A N, Kumar A P and Singh H N 1986Cycas circinalis-Anabaena cycadeae symbiosis: Photosynthesis and the enzymes of nitrogen and hydrogen metabolism in symbiotic and culturedAnabaena cycadeae. Symbiosis 1, 239–250.

    Google Scholar 

  • Peters G A 1975 TheAzolla-Anabaena azollae relationship. III. Studies on metabolic capabilities and a further characterization of the symbiont. Arch. Microbiol. 103, 113–122.

    Google Scholar 

  • Peters G A 1976 Studies on theAzolla-Anabaena azollac symbiosis.In Proceedings of the 1st International Symposium on Nitrogen Fixation. Eds. W ENewton and C JNyman, pp 592–610. Washington State University Press, Pullman, WA.

    Google Scholar 

  • Peters G A 1977 TheAzolla-Anabaena symbiosis.In Genetic Engineering and Nitrogen Fixation. Ed. AHollaender, pp 231–258. Plenum, New York.

    Google Scholar 

  • Peters G A and Calvert H E 1983 TheAzolla-Anabaena symbiosis.In Algal Symbiosis. Ed. L JGoff, pp 109–145. Cambridge University Press, New York.

    Google Scholar 

  • Peters G A, Kaplan D, Meeks J C, Buzby K M, Marsh B H and Corbin J L, 1985 Aspects of nitrogen and carbon interchange in theAzolla-Anabaena symbiosis.In Nitrogen Fixation and CO2 Metabolism. Eds. P WLudden and J EBurris, pp 213–222. Elsevier, New York.

    Google Scholar 

  • Peters G A and Mayne B C 1974a. TheAzolla. Anabaena azollae relationship. I. Initial characterization of the association. Plant Physiol. 53, 813–819.

    Google Scholar 

  • Peters G A and Mayne B C 1974b. TheAzolla, Anabaena azollae relationship. II. Localization of nitrogenase activity as assayed by acetylene reduction. Plant Physiol. 53, 820–824.

    Google Scholar 

  • Peters G A and Meeks J C 1989 TheAzolla-Anabaena symbiosis: Basic biology. Annu. Rev. Plant Physiol. and Plant Mol. Biol. 40, 193–210.

    Google Scholar 

  • Peters G A, Ray T B, Mayne B C and Toia R EJr 1980 TheAzolla-Anabaena association: Morphological and physiological Studies. In Nitrogen Fixation. Vol. II Eds. W ENewton and W HOrme-Johnson, pp 293–309. University Park Press. Baltimore, MD.

    Google Scholar 

  • Peters G A, Toia R E Jr, Calvert H E and Marsh B H 1986 Lichens toGunnera-with emphasis onAzolla. Plant and Soil 90, 17–34.

    Google Scholar 

  • Peters G A, Toia R E Jr, Raveed D and Levine N J 1978 TheAzolla-Anabaena azollae relationship. VI. Morphological aspects of the association. New Phytol. 80, 583–593.

    Google Scholar 

  • Plazinski J 1990 TheAzolla-Anabaena symbiosis.In Molecular Biology of Symbiotic Nitrogen Fixation. Ed. P MGresshoff, pp 51–75. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Plazinski J, Taylor R, Shaw W, Croft L., Rolfe B G and Gunning B E S 1990 Isolation ofAgrobacterium sp. strain from theAzolla leaf cavity. FEMS Microbiol. Lett. 70 55–60.

    Google Scholar 

  • Plazinski J, Zheng Q, Taylor R, Croft L, Rolle B G and Gunning B E S 1990 DNA probes show genetic variation in cyanobacterial symbionts of theAzolla fern and a closer relationship to free-livingNostoc strains than to free-livingAnabaena strains. Appl. Environ. Microbiol. 56, 1263–1270.

    Google Scholar 

  • Plazinski J, Zheng Q, Taylor R, Rolfe B G and Gunning B E S 1989 Use of DNA/DNA hybridization techniques to authenticate the production of newAzolla-Anabaena symbiotic associations. FEMS Microbiol. Lett. 65, 199–204.

    Google Scholar 

  • Rai A N 1990 Handbook of Symbiotic Cyanobacteria. CRC Press, Boca Raton, FL. 253 p.

    Google Scholar 

  • Ray T B, Mayne B C, Peters G A and Toia R FJr 1979Azolla-Anabaena relationship. VIII. Photosynthetic characterization of the association and individual partners. Plant Physiol. 64, 791–795.

    Google Scholar 

  • Ray T B, Peters G A, Toia R EJr and Mayne B C 1978Azolla-Anabaena relationship. VII. Distribution of ammonia assimilating enzymes, protein and chlorophyll between host and symbiont. Plant Physiol. 63, 463–467.

    Google Scholar 

  • Reddy P M and Fisher R W 1988 A new simple method to produceAnabaena-freeAzolla by in vitro fertilization of micromanipulated megasporocarps. Plant Cell Rep. 7, 430–433.

    Google Scholar 

  • Ridgway J E 1967 The biotic relationship ofAnthoceros andPhaeoceros to certain cyanobacteria. ann. Mo. Bot. Gard. 54, 95–102.

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury J B, Herdman M and Stanier R Y 1979 Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61.

    Google Scholar 

  • Rodgers G A and Stewart W D P 1977 The cyanophytehepatic symbiosis. I. Morphology and physiology. New Phytol. 78, 441–458.

    Google Scholar 

  • Rosen B H, Johnson R C Jr, Fisher R W and Gates J E 1987 Ultrastructural localization of cell surface immunospecificity inAnabaena azollae using indirect fluorescent antibody staining. Am. J. Bot. 74, 1060–1064.

    Google Scholar 

  • Shi D-J and Hall D O 1988 TheAzolla-Anabaena association: Historical perspective, symbiosis and energy metabolism. Bot. Rev. 54, 353–386.

    Google Scholar 

  • Silvester W B 1975 Endophyte adaptation inGunnera-Nostoc symbiosis.In Symbiotic Nitrogen Fixation in Plants. Ed. P SNutman. pp 521–538. Cambridge University Press, Cambridge.

    Google Scholar 

  • Silvester W B and McNamara P J 1976 The infection process and ultrastructure of theGunnera-Nostoc symbiosis. New Phystol. 77, 135–141.

    Google Scholar 

  • Sprent J I and Raven J A 1985 Evolution of nitrogen-fixing symbioses. Proc. Roy. Soc. Edinburgh. 85B, 215–237.

    Google Scholar 

  • Steinberg N A and Meeks J C 1989 Photosynthetic CO2 fixation and ribulose bisphosphate carboxylase/oxygenase activity ofNostoc sp. strain UCD 7801 in symbiotic association withAnthoceros punctatus. J. Bacteriol. 171, 6227–6233.

    PubMed  Google Scholar 

  • Stewart W D P and Rodgers G A 1977 The cyanophyteheptatic symbiosis. II. Nitrogen fixation and the interchange of nitrogen and carbon. New Phytol. 78, 459–471.

    Google Scholar 

  • Stewart W D P, Rowell P and Rai A N 1980 Symbiotic nitrogen-fixing cyanobacteria.In Nitrogen Fixation. Eds. W D PStewart and J RGallon. pp 239–277. Academic Press, New York.

    Google Scholar 

  • Strasburger E 1873 ÜberAzolla. Herman Davis Verlag, Jena. 86 p.

    Google Scholar 

  • Towata E M 1985a Mucilage glands and cyanobacterial colonization inGunnera kaalensis (Haloragaceae). Bot. Gaz. 146, 56–62.

    Google Scholar 

  • Towata E M 1985b Morphometric and cytochemical ultrastructural analyses of theGunnera kaalensis/Nostoc symbiosis. Bot. Gaz. 146, 293–301.

    Google Scholar 

  • Tyagi V V S, Ray T B, Mayne B C and Peters G A 1981 TheAzolla-Anabaena relationship. XI. Phycobiliproteins in the action spectrum for nitrogenase-catalyzed acetylene reduction. Plant Physiol. 68, 1479–1484.

    Google Scholar 

  • Uheda E 1986 Isolation of empty packets fromAnabaena-freeAzolla. Plant Cell Physiol. 27, 1187–1190.

    Google Scholar 

  • Wallace W H and Gates J E 1986 Identification of eubacteria isolated from leaf cavities of four species of the N-fixingAzolla ferns asArthrobacter Conn and Dimick. Appl. Environ. Microbiol. 52, 425–429.

    Google Scholar 

  • Wittman W, Bergersen F J and Kennedy G S 1965 The coralloid roots ofMacrozamia communis Johnston. Aust. J. Biol. Sci. 18, 1129–1134.

    Google Scholar 

  • Zimmerman W J, Rosen B H and Lumpkin T A 1989 Enzymatic, lectin, and morphological characterization and classification of presumptive cyanobionts fromAzolla Lam. New Phytol. 113, 497–503.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, G.A. Azolla and other plant-cyanobacteria symbioses: Aspects of form and function. Plant Soil 137, 25–36 (1991). https://doi.org/10.1007/BF02187428

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02187428

Key words

Navigation