Skip to main content
Log in

Scaling of particle trajectories on a lattice

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The scaling behavior of the closed trajectories of a moving particle generated by randomly placed rotators or mirrors on a square or triangular lattice is studied numerically. On both lattices, for most concentrations of the scatterers the trajectories close exponentially fast. For special critical concentrations infinitely extended trajectories can occur which exhibit a scaling behavior similar to that of the perimeters of percolation clusters.At criticality, in addition to the two critical exponents τ=15/7 andd f=7/4 found before, the critical exponent σ=3/7 appears. This exponent determines structural scaling properties of closed trajectories of finite size when they approach infinity. New scaling behavior was found for the square lattice partially occupied by rotators, indicating a different universality class than that of percolation clusters.Near criticality, in the critical region, two scaling functions were determined numerically:f(x), related to the trajectory length (S) distributionn s, andh(x), related to the trajectory sizeR s (gyration radius) distribution, respectively. The scaling functionf(x) is in most cases found to be a symmetric double Gaussian with the same characteristic size exponent σ=0.43≈3/7 as at criticality, leading to a stretched exponential dependence ofn S onS, nS∼exp(−S 6/7). However, for the rotator model on the partially occupied square lattice an alternative scaling function is found, leading to a new exponent σ′=1.6±0.3 and a superexponential dependence ofn S onS.h(x) is essentially a constant, which depends on the type of lattice and the concentration of the scatterers. The appearance of the same exponent σ=3/7 at and near a critical point is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Th. W. Ruijgrok and E. G. D. Cohen,Phys. Lett. A 133:415 (1988).

    Google Scholar 

  2. X. P. Kong and E. G. D. Cohen,Phys. Rev. B 40:4838 (1989).

    Google Scholar 

  3. X. P. Kong and E. G. D. Cohen,J. Stat. Phys. 62:737 (1991).

    Google Scholar 

  4. R. M. Ziff, X. P. Kong, and E. G. D. Cohen,Phys. Rev. A 44:2410 (1991).

    Google Scholar 

  5. E. G. D. Cohen, New types of diffusion in lattice gas cellular automata, inMicroscopic Simulations of Complex Hydrodynamic Phenomena, M. Maréchal and B. L. Holian, eds. (Plenum Press, New York, 1992), p. 137.

    Google Scholar 

  6. H. F. Meng and E. G. D. Cohen,Phys. Rev. E 50:2482 (1994).

    Google Scholar 

  7. E. G. D. Cohen, and F. Wang,J. Stat. Phys. 81:445 (1995).

    Google Scholar 

  8. F. Wang and E. G. D. Cohen,J. Stat. Phys. 81:467 (1995).

    Google Scholar 

  9. E. G. D. Cohen and F. Wang,Physica A 219:56 (1995).

    Google Scholar 

  10. E. G. D. Cohen and F. Wang,Fields Inst. Commun. 6:43 (1996).

    Google Scholar 

  11. F. Wang and E. G. D. Cohen,J. Stat. Phys. 84:233 (1996).

    Google Scholar 

  12. D. Stauffer and A. Aharony,Introduction to Percolation Theory (Taylor and Francis, London, 1992).

    Google Scholar 

  13. R. M. Ziff,Phys. Rev. Lett. 56:545 (1986).

    Google Scholar 

  14. R. M. Ziff, P. T. Cumming, and G. Stell,J. Phys. A 17:3009 (1984).

    Google Scholar 

  15. M.-S. Cao and E. G. D. Cohen, cond-mat (a xxx.lanl.gov #9608159, #9608160 (1996).

  16. P. Grassberger,J. Phys. A 19:2675 (1986).

    Google Scholar 

  17. R. M. Ziff, Private communication.

  18. M. Ortuño, J. Ruiz, and M. F. Gunn,J. Stat. Phys. 65:453 (1991).

    Google Scholar 

  19. L. A. Bunimovich and S. E. Troubetzkoy,J. Stat. Phys. 67:289 (1992);74: 1 (1994).

    Google Scholar 

  20. R. M. Bradley,Phys. Rev. B 41:914, (1989).

    Google Scholar 

  21. A. L. Owczarek and T. Prellberg,J. Stat. Phys. 79:951 (1995).

    Google Scholar 

  22. J. D. Catalá, J. Ruiz, and M. Ortuño,J. Phys. B 90:369 (1993).

    Google Scholar 

  23. P. L. Leath,Phys. Rev. Lett. 36:921 (1976);Phys. Rev. B 14:5046 (1976).

    Google Scholar 

  24. A. M. Ferrenberg and R. H. Swendsen,Phys. Rev. Lett. 61:2635 (1988).

    Google Scholar 

  25. J. P. Hansen and I. R. McDonald,Theory of Simple Liquids (Academic Press, London, 1986), p. 106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, MS., Cohen, E.G.D. Scaling of particle trajectories on a lattice. J Stat Phys 87, 147–178 (1997). https://doi.org/10.1007/BF02181484

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02181484

Key Words

Navigation