Skip to main content
Log in

A perturbative approach to spectrum and correlation functions of the chiral Potts model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The massive high-temperature phase of the chiral Potts quantum chain is studied using perturbative methods. For the ℤ3-chain we present high-temperature expansions for the ground-state energy and the dispersion relations of the two single-particle states as well as two-particle states at general values of the parameters. We also present a perturbative argument showing that a large class of massive ℤn-spin quantum chains have quasiparticle spectra withn-1 fundamental particles. It is known from earlier investigations that—at special values of the parameters—some of the fundamental particles exist only for limited ranges of the momentum. In these regimes our argument is not rigorous, as one can conclude from a discussion of the radius of convergence of the perturbation series. We also derive correlation functions from a perturbative evaluation of the ground-state for the ℤ3-chain. In addition to an exponential decay we observe an oscillating contribution. The oscillation length seems to be related to the asymmetry of the dispersion relations. We show that this relation is exact at special values of the parameters for general ℤn using a form factor expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ostlund, Incommensurate and commensurate phases in asymmetric clock models,Phys. Rev. B 24:398 (1981).

    Google Scholar 

  2. M. Marcu, A. Regev, and V. Rittenberg, The global symmetries of spin systems defined on Abelian groups. I,J. Math. Phys. 22:2740 (1981).

    Google Scholar 

  3. P. Centen, M. Marcu, and V. Rittenberg, Non-universality in ℤ3 symmetric spin systems,Nucl. Phys. B 205:585 (1982).

    Google Scholar 

  4. S. Howes, L. P. Kadanoff, and M. denNijs, Quantum model for commensurate-incommensurate transitions,Nucl. Phys. B 215:169 (1983).

    Google Scholar 

  5. G. von Gehlen and V. Rittenberg, ℤn-Symmetric quantum chains with an infinite set of conserved charges and ℤn zero modes,Nucl. Phys. B 257:351 (1985).

    Google Scholar 

  6. L. Dolan and M. Grady, Conserved charges from self-duality,Phys. Rev. D 25:1587 (1982).

    Google Scholar 

  7. J. H. H. Perk, Star-triangle equations, quantum Lax pairs, and higher genus curves,Proc. Symp. Pure Math. 49:341 (1989).

    Google Scholar 

  8. L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition,Phys. Rev. 65:117 (1944).

    Google Scholar 

  9. H. Au-Yang, B. M. McCoy, J. H. H. Perk, Sh. Tang, and M. L. Yan, Commuting transfer matrices in the chiral Potts models: Solutions of star-triangle equations with genus >1,Phys. Lett. 123A:219 (1987).

    Google Scholar 

  10. R. J. Baxter, J. H. H. Perk, and H. Au-Yang, New solutions of the star-triangle relations for the chiral Potts model,Phys. Lett. 128A:138 (1988).

    Google Scholar 

  11. R. J. Baxter, The superintegrable chiral Potts model,Phys. Lett. 133A:185 (1988).

    Google Scholar 

  12. G. Albertini, B. M. McCoy, and J. H. H. Perk, Commensurate-incommensurate transition in the ground state of the superintegrable chiral Potts model,Phys. Lett. 135A:159 (1989).

    Google Scholar 

  13. G. Albertini, B. M. McCoy, and J. H. H. Perk, Level crossing transitions and the massless phases of the superintegrable chiral Potts chain,Phys. Lett. 139A:204 (1989)

    Google Scholar 

  14. G. Albertini, B. M. McCoy, and J. H. H. Perk, Eigenvalue spectrum of the superintegrable chiral Potts model,Adv. Stud. Pure Math. 19:1 (1989).

    Google Scholar 

  15. H. Au-Yang, and J. H. H. Perk, Onsager's star-triangle equation: Master key to integrability,Adv. Stud. Pure Math. 19:57 (1989).

    Google Scholar 

  16. B. M. McCoy, The chiral Potts model: From physics to mathematics and back, inSpecial Functions ICM 90, Satellite Conference Proceedings, M. Kashiwara and T. Miwa, eds. (Springer, Berlin, 1991), p. 245.

    Google Scholar 

  17. S.-S. Roan, A characterization of “rapidity” curve in the chiral Potts model,Commun. Math. Phys. 145:605 (1992).

    Google Scholar 

  18. B. Davies, Onsager's algebra and superintegrability,J. Phys. A: Math. Gen. 23:2245 (1990).

    Google Scholar 

  19. B. Davies, Onsager's algebra and the Dolan-Grady condition in the non-self-dual case,J. Math. Phys 32:2945 (1991).

    Google Scholar 

  20. S.-S. Roan, Onsager's algebra, loop algebra and chiral Potts model, Preprint Max-Planck-Institut für Mathematik Bonn MPI/91-70.

  21. C. Ahn and K. Shigemoto, Onsager algebra and integrable lattice models,Mod. Phys. Lett. A 6:3509 (1991).

    Google Scholar 

  22. V. A. Fateev and A. B. Zamolodchikov, Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in ℤn-symmetric statistical systems,Sov. Phys. JETP 62:215 (1985).

    Google Scholar 

  23. F. C. Alcaraz and A. L. Santos, Conservation laws for ℤ(N) symmetric quantum spin models and their exact ground state energies,Nucl. Phys. B 275:436 (1986).

    Google Scholar 

  24. V. A. Fateev and A. B. Zamolodchikov, Conformal quantum field theory models in two dimensions having ℤ3 symmetry,Nucl. Phys. B 280:644 (1987).

    Google Scholar 

  25. V. A. Fateev and S. L. Lukyanov, The models of two-dimensional conformal quantum field theory with ℤn symmetry,Int. J. Mod. Phys. A 3:507 (1988).

    Google Scholar 

  26. J. L. Cardy, Critical exponents of the chiral Potts model from conformal field theory,Nucl. Phys. B 389:577 (1993).

    Google Scholar 

  27. A. B. Zamolodchikov, Higher-order integrals of motion in two-dimensional models of the field theory with broken conformal symmetry,JETP Lett. 46:160 (1987).

    Google Scholar 

  28. A. B. Zamolodchikov, Integrals of motion in scaling 3-state Potts model field theory,Int. J. Mod. Phys. A 3:743 (1988).

    Google Scholar 

  29. A. B. Zamolodchikov, Integrable field theory from conformal field theory,Adv. studles in Pure Math. 19:641 (1989).

    Google Scholar 

  30. V. A. Fateev and A. B. Zamolodchikov, Integrable perturbations of ℤN parafermion models and theO(3) sigma model,Phys. Lett. B 271:91 (1991).

    Google Scholar 

  31. G. Mussardo, Off-critical statistical models: Factorized scattering theories and bootstrap Program,Phys. Rep. 218:215 (1992).

    Google Scholar 

  32. G. von Gehlen and A. Honecker, Multi-particle structure in the ℤn-chiral Potts models,J. Phys. A: Math. Gen. 26:1275 (1993).

    Google Scholar 

  33. G. von Gehlen, Phase diagram and two-particle structure of the ℤ3-chiral Potts model, inProceedings of International Symposium on Advanced Topics of Quantum Physics, J. Q. Liang, M. L. Wang, S. N. Qiao, and D. C. Su, (Science Press, Beijing, 1992), p. 248.

    Google Scholar 

  34. G. von Gehlen and A. Honecker, Excitation spectrum and correlation functions of the ℤ3-chiral Potts quantum spin chain,Nucl. Phys. B 435:505 (1995).

    Google Scholar 

  35. S. Dasmahapatra, R. Kedem, and B. M. McCoy, Spectrum and completeness of the 3 state superintegrable chiral Potts model,Nucl. Phys. B 396:506 (1993).

    Google Scholar 

  36. R. Kedem and B. M. McCoy, Quasi-particles in the chiral Potts model,Int. J. Mod. Phys. B 8:3601 (1994).

    Google Scholar 

  37. N. S. Han and A. Honecker, Low-temperature expansions and correlation functions of the ℤ3-chiral Potts model,J. Phys. A: Math. Gen. 27:9 (1994).

    Google Scholar 

  38. Ph. Christe and M. Henkel,Introduction to Conformal Invariance and its Applications to Critical Phenomena, (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  39. A. B. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory,Theor. Math. Phys. 65:1205 (1986).

    Google Scholar 

  40. G. Baym,Lectures on Quantum Mechanics (Benjamin/Cummings, 1969), Chapter 11.

  41. G. Albertini, B. M. McCoy, J. H. H. Perk and S. Tang, Excitation spectrum and order parameter for the integrableN-state chiral Potts model,Nucl. Phys. B 314:741 (1989).

    Google Scholar 

  42. M. Henkel and J. Lacki, Integrable chiral ℤn-chiral quantum chains and a new class of trigonometric sums,Phys. Lett. 138A:105 (1989).

    Google Scholar 

  43. W. J. Camp, Decay of order in classical many-body systems. II. Ising model at high temperatures,Phys. Rev. B 6:960 (1972).

    Google Scholar 

  44. A. Honecker, Quantum spin models and extended conformal algebras, Ph.D. thesis BONN-IR-95-12 [hep-th/9503104] (1995).

  45. F. M. Goodman, P. de la Harpe and V. F. R. Jones,Coxeter Graphs and Towers of Algebras (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  46. K. Yildirim, Paritätssymmetrie im Chiralen ℤn-Symmetrischen Integrablen Potts-Modell, Diplomarbeit BONN-IB-95-02 (1995).

  47. J. L. Cardy, Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories,Nucl. Phys. B 275:200 (1986).

    Google Scholar 

  48. G. von Gehlen, V. Rittenberg and G. Schütz, Operator content ofn-state quantum chains in thec=1 region.J. Phys. A: Math. Gen. 21:2805 (1988).

    Google Scholar 

  49. A. Honecker, Automorphisms ofW-algebras and extended rational conformal field theories,Nucl. Phys. B 400:574 (1993).

    Google Scholar 

  50. J. B. Kogut, An introduction to lattice gauge theory and spin systems,Rev. Mod. Phys. 51:659 (1979).

    Google Scholar 

  51. T. W. Krallman, Phasendiagramm des chiralen Pottsmodells, Diplomarbeit BONN-IR-91-11 (1991).

  52. G. Albertini and B. M. McCoy, Correlation functions of the chiral Potts chain from conformal field theory and finite-size corrections,Nucl. Phys. B 350:745 (1990).

    Google Scholar 

  53. H. Lehmann, Über Eigenschaften von Ausbreitungsfunktionen und Renormierungskonstanten Quantisierter Felder,Nuovo Cimento 11:342 (1954).

    Google Scholar 

  54. G. von Gehlen and L. Kaldenbach, Off-criticality behaviour of the ℤ5-quantum spin chain, in preparation.

  55. G. Albertini, S. Dasmahapatra and B. M. McCoy, Spectrum doubling and the extended Brillouin zone in the excitations of the three states Potts spin chain,Phys. Lett. A 170:397 (1992).

    Google Scholar 

  56. M. Reed and B. Simon,Methods of Modern Mathematical Physics IV: Analysis of Operators (Academic Press, New York, 1978), Chapter XII.

    Google Scholar 

  57. T. Kato,Perturbation Theory for Linear Operators, 2nd ed. (Springer-Verlag, Berlin, 1976).

    Google Scholar 

  58. F. Rellich, Störungstheorie der Spektralzerlegung. IV,Math. Ann. 117:356 (1940).

    Google Scholar 

  59. T. Kato, On the convergence of the perturbation method. I,Prog. Theor. Phys. 4:514 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honecker, A. A perturbative approach to spectrum and correlation functions of the chiral Potts model. J Stat Phys 82, 687–741 (1996). https://doi.org/10.1007/BF02179791

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179791

Key Words

Navigation