Skip to main content
Log in

Surface-induced finite-size effects for first-order phase transitions

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider classical lattice models describing first-order phase transitions, and study the finite-size scaling of the magnetization and susceptibility. In order to model the effects of an actual surface in systems such as small magnetic clusters, we consider models with free boundary conditions. For a field-driven transition with two coexisting phases at the infinite-volume transition pointh=h t , we prove that the low-temperature, finite-volume magnetizationm free(L, h) per site in a cubic volume of sizeL d behaves like

$$m_{free} (L,h) = \frac{{m_ + + m_ - }}{2} + \frac{{m_ + - m_ - }}{2}tanh\left[ {\frac{{m_ + - m_ - }}{2}L^d (h - h_\chi (L))} \right] + O\left( {\frac{1}{L}} \right)$$

whereh x (L) is the position of the maximum of the (finite-volume) susceptibility andm ± are the infinite-volume magnetizations ath=h t +0 andh=h t −0, respectively. We show thath x (L) is shifted by an amount proportional to 1/L with respect to the infinite-volume transition pointh t provided the surface free energies of the two phases at the transition point are different. This should be compared with the shift for periodic boundary conditions, which for an asymmetric transition with two coexisting phases is proportional only to 1/L 2d. One can consider also other definitions of finite-volume transition points, for example, the positionh U (L) of the maximum of the so-called Binder cumulantU free(L,h). Whileh U (L) is again shifted by an amount proportional to 1/L with respect to the infinite-volume transition pointh t , its shift with respect toh χ (L) is of the much smaller order 1/L 2d. We give explicit formulas for the proportionality factors, and show that, in the leading 1/L 2d term, the relative shift is the same as that for periodic boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Binder, Finite size scaling analysis of Ising model block distribution functions,Z. Phys. B 43:119–140 (1981).

    Google Scholar 

  2. C. Borgs, Finite-size scaling for Potts models in long cylinders,Nucl. Phys. B 384:605–645 (1992).

    Google Scholar 

  3. C. Borgs and J. Imbrie, A unified approach to phase diagrams in field theory and statistical mechanics,Commun. Math. Phys. 123:305–328 (1989).

    Google Scholar 

  4. C. Borgs and J. Imbrie, Finite-size scaling and surface tension from effective one dimensional systems,Commun. Math. Phys. 145:235–280 (1992).

    Google Scholar 

  5. C. Borgs and J. Imbrie, Crossover finite-size scaling at first-order transitions,J. Stat. Phys. 69:487–537 (1992).

    Google Scholar 

  6. C. Borgs and R. Kotecký, A rigorous theory of finite-size scaling at first-order phase transitions,J. Stat. Phys. 61:79–119 (1990).

    Google Scholar 

  7. C. Borgs and R. Kotecký, Finite-size effects at asymmetric first-order phase transitions,Phys. Rev. Lett. 68:1734–1737 (1992).

    Google Scholar 

  8. C. Borgs, R. Kotecký, and S. Miracle-Solé Finite-size scaling for Potts models,J. Stat. Phys. 62:529–552 (1991).

    Google Scholar 

  9. K. Binder and D. P. Landau, Finite-size scaling at first-order phase transitions,Phys. Rev. B 30:1477–1485 (1984).

    Google Scholar 

  10. H. W. Blöte and M. P. Nightingale, Critical behavior of the two dimensional Potts model with a continuous number of states; a finite-size scaling analysis,Physica 112A:405–465 (1981).

    Google Scholar 

  11. C. Borgs and R. Waxler, First order phase transitions in unbounded spin systems I. Construction of the phase diagram,Commun. Math. Phys. 126:291–324 (1989).

    Google Scholar 

  12. C. Borgs and R. Waxler, First order phase transitions in unbounded spin systems II. Completeness of the phase diagram,Commun. Math. Phys. 126:483–500 (1990).

    Google Scholar 

  13. M. S. S. Challa, D. P. Landau, and K. Binder, Finite-size effects at temperature-driven first-order transitions,Phys. Rev. B 34:1841–1852 (1986).

    Google Scholar 

  14. H. Federer,Geometric Measure Theory (Springer-Verlag, Heidelberg, 1969).

    Google Scholar 

  15. M. E. Fisher, InCritical Phenomena, M. S. Green, ed. (Academic Press, New York, 1971).

    Google Scholar 

  16. M. E. Fisher and M. N. Barber, Scaling theory for finite-size effects in the critical region,Phys. Rev. Lett. 28:1516–1519 (1972).

    Google Scholar 

  17. M. E. Fisher and A. N. Berker, Scaling for first-order phase transitions in thermodynamic and finite systems,Phys. Rev. B 26:2507–2513 (1982).

    Google Scholar 

  18. A. E. Ferdinand and M. E. Fisher, Bounded and inhomogeneous Ising models I. Specific heat anomaly of a finite lattice,Phys. Rev. 185:832–846 (1969).

    Google Scholar 

  19. P. Holický, R. Kotecký, and M. Zahradník, Rigid interfaces for lattice models at low temperatures,J. Stat. Phys. 50:755–812 (1988).

    Google Scholar 

  20. P. Holický, R. Kotecký, and M. Zahradník, Phase diagrams of horizontaly invariant Gibbs states for the Ising type models, in preparation.

  21. Y. Imry, Finite-size rounding of a first-order phase transition,Phys. Rev. B 21:2042–2043 (1980).

    Google Scholar 

  22. V. Privman and M. E. Fisher, Finite-size effects at first-order transitions,J. Stat. Phys. 33:385–417 (1983).

    Google Scholar 

  23. V. Privman and J. Rudnick, Nonsymmetric first-order transitions: Finite-size scaling and tests for infinite-range models,J. Stat. Phys. 60:551–560 (1990).

    Google Scholar 

  24. S. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems,Theor. Math. Phys. 25:1185–1192 (1975).

    Google Scholar 

  25. S. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems,Theor. Math. Phys.,26:39–49 (1976).

    Google Scholar 

  26. Ya. G. Sinai,Theory of Phase Transitions: Rigorous Results (Pergamon Press, Oxford, 1982).

    Google Scholar 

  27. E. Seiler,Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  28. J. E. Taylor, Some crystalline variational techniques and results,Astérisque 154–155:307–320 (1987).

    Google Scholar 

  29. M. Zahradník, An alternate version of Pigorov-Sinai theory,Commun. Math. Phys. 93:559–581 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgs, C., Kotecký, R. Surface-induced finite-size effects for first-order phase transitions. J Stat Phys 79, 43–115 (1995). https://doi.org/10.1007/BF02179383

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179383

Key Words

Navigation