Skip to main content
Log in

The metabolic effects of tumor necrosis factor and other cytokines

  • Published:
Biotherapy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

VLDL:

very low density lipoprotein

LPL:

lipoprotein lipase

IDL:

intermediate density lipoprotein

LDL:

low density lipoprotein

IL:

interleukin

LPS:

lipopolysaccharide or endotoxin

PIA:

phenylisopropyladenosine

T4:

thyroxine

T3:

triiodothyronine

References

  1. Beisel WR. Metabolic response to infection. Ann Rev Med 1975; 26: 9–20.

    PubMed  Google Scholar 

  2. Kaufmann RL, Matson CF, Beisel WR. Hypertriglyceridemia produced by endotoxin: role of impaired triglyceride disposal mechanisms. J Infect Dis 1976; 133: 548–55.

    PubMed  Google Scholar 

  3. Lang CH, Bagby GJ, Spitzer JJ. Glucose kinetics and body temperature after lethal and nonlethal doses of endotoxin. Amer J Physiol 1985; 248: R471–8.

    PubMed  Google Scholar 

  4. Beutler B, Cerami A. Cachectin and tumor necrosis factor as two sides of the same biological coin. Nature 1986; 320: 584–8.

    PubMed  Google Scholar 

  5. Tracey KJ, Lowry SF, Cerami A. Cachectin: a hormone that triggers acute shock and chronic cachexia. J Infect Diseases 1988; 157: 413–21.

    Google Scholar 

  6. Gallin JI, Kaye D, O'Leary WM. Serum lipids in infection. N Engl J Med 1969; 281: 1081–6.

    PubMed  Google Scholar 

  7. Lees RS, Fiser RH Jr, Beisel WR et al. Effects of an experimental viral infection on plasma lipid and lipoprotein metabolism. Metabolism 1972; 21: 825–33.

    PubMed  Google Scholar 

  8. Guy MW. Serum and tissue fluid lipids in rabbits experimentally infected with Trypanosoma brucei. Trans R Soc Trop Med Hyg 1979; 69: 429.

    Google Scholar 

  9. Fiser RH, Denniston JC, Beisel WR. Infection with Diplococcus pneumoniae and Salmonella typhimurium in monkeys: Changes in plasma lipids and lipoproteins. J Infect Dis 1972; 125: 54–60.

    PubMed  Google Scholar 

  10. Guckian JD. Role of metabolism in pathogenesis of bacteremia due to Diplococcus pneumoniae in rabbits. J Infect Dis 1973; 127: 1–8.

    PubMed  Google Scholar 

  11. Wolfe RR, Shaw JHF, Durkot MI. Effect of sepsis on VLDL kinetics: Responses in basal state and during glucose infusion. Am J Physiol 1985; 248: E732-E740.

    PubMed  Google Scholar 

  12. Rouzer CA, Cerami A. Hypertriglyceridemia associated with Trypanosoma bruceii bruceii infection in rabbits: relative effect of triglyceride removal. Molec Biochem Parasit 1980; 2: 31–8.

    Google Scholar 

  13. Kawakami M, Cerami A. Studies of endotoxin-induced decrease in lipoprotein lipase activities. J Exp Med 1981; 154: 631–9.

    PubMed  Google Scholar 

  14. Kawakami M, Pekala PH, Lane MD, Cerami A. Lipoprotein lipase suppression in 3T3-L1 cells by an endotoxin induced mediator from exudate cells. Proc Natl Acad Sci USA 1982; 79: 912–6.

    PubMed  Google Scholar 

  15. Pekala PH, Kawakami M, Angus CW, Lane MD Cerami A. Selective inhibition of synthesis of enzymes forde novo fatty acid biosynthesis by an endotoxin-induced mediator from exudate cells. Proc Natl Acad Sci USA 1983; 80: 2743–7.

    PubMed  Google Scholar 

  16. Pekala PH, Price SR, Horn CA, Hom BE, Moss J, Cerami A. Model for cachexia in chronic disease: Secretory products of endotoxin-stimulated macrophages induce a catabolic state in 3T3-L1 adipocytes. Trans Assoc Am Phys 1984; 98: 251–9.

    Google Scholar 

  17. Cerami A, Ikeda Y, Latrang N, Hotez PGA, Beutler B. Weight loss associated with an endotoxin induced mediator from peritoneal macrophages: the role of cachectin (tumor necrosis factor). Immunol Letters 1985; 11: 173–7.

    Google Scholar 

  18. Patton JS, Shepard HM, Wilking H, Lewis G, Aggarwal BB, Eessalu TE, Gavin LA, Grunfeld C. Interferons and tumor necrosis factors have similar catabolic effects on 3T3-L1 cells. Proc Natl Acad Sci USA 1986; 83: 8313–7.

    PubMed  Google Scholar 

  19. Price SR, Olivecrona T, Pekala PH. Regulation of lipoprotein lipase synthesis in 3T3-LI adipocytes by cachectin. Biochem J 1986; 240: 601–4.

    PubMed  Google Scholar 

  20. Kawakami M, Murase T, Ogawa H, Ishibashi S, Mori N, Takaku F, Shibata S. Human recombinant TNF suppresses lipoprotein lipase activity and stimulates lipolysis in 3T3-L1 cells. J Biochem 1987; 101: 331–8.

    PubMed  Google Scholar 

  21. Beutler BA, Cerami A. Recombinant interleukin-1 suppresses lipoprotein lipase activity in 3T3-L1 cells. J Immunol 1985; 135: 3969–71.

    PubMed  Google Scholar 

  22. Price SR, Mizel SB, Pekala PH. Regulation of lipoprotein lipase synthesis and 3T3-L1 adipocyte metabolism by recombinant interleukin-1. Biochim Biophys Acta 1986; 889: 374–81.

    PubMed  Google Scholar 

  23. Keay S, Grossberg SE. Interferon inhibits the conversion of 3T3-LI mouse fibroblast into adipocytes. Proc Natl Acad Sci USA 1980; 77: 4099–103.

    PubMed  Google Scholar 

  24. Rofe AM, Conyers RAJ, Baise R, Gamble JR, Vadas MA. The effects of recombinant tumor necrosis factor (cachectin) on metabolism in isolated rat adipocyte, hepatocyte and muscle preparations. Biochem J 1987; 247: 789–92.

    PubMed  Google Scholar 

  25. Kettelhut IC, Goldberg AL. Tumor necrosis factor can induce fever in rats without activating protein breakdown in muscle or lipolysis in adipose tissue. J Clin Invest 1988; 81: 1384–9.

    PubMed  Google Scholar 

  26. Kern PA. Recombinant human tumor necrosis factor does not inhibit lipoprotein lipase in primary cultures of isolated human adipocytes. J Lipid Res 1988; 29: 909–14.

    PubMed  Google Scholar 

  27. Fried SK, Zechner R. Cachectin/tumor necrosis factor decreases human adipose tissue lipoprotein lipase mRNA levels, synthesis and activity. J Lipid Res 1989; 30: 1917–23.

    PubMed  Google Scholar 

  28. Feingold KR, Grunfeld C. Tumor necrosis factor alpha stimulates hepatic lipogenesis in the ratin vivo. J Clin Invest 1987; 80: 184–90.

    PubMed  Google Scholar 

  29. Krauss RM, Feingold KR, Grunfeld C. Tumor necrosis factor acutely increases plasma levels of very low density lipoproteins of normal size and composition. Endocrinology (in press).

  30. Semb H, Peterson J, Tavernier J, Olivecrona T. Multiple effects of tumor necrosis factors on lipoprotein lipasein vivo. J Biol Chem 1987; 62: 8390–4.

    Google Scholar 

  31. Evans RD, Williamson DH. Tumor necrosis factor alpha (cachectin) mimics some of the effects of tumour growth on the disposal of a [14C] lipid load in virgin, lactating and little-removed rats. Biochem J 1988; 256: 1055–8.

    PubMed  Google Scholar 

  32. Grunfeld C, Gulli R, Moser AH, Gavin LA, Feingold KR. The effect of tumor necrosis factor administrationin vivo on lipoprotein lipase activity in various tissues of the rat. J Lipid Res 1989; 30: 579–85.

    PubMed  Google Scholar 

  33. Chajek-Shaul T, Friedman G, Stein O, Shiloni E, Etienne J, Stein Y. Mechanisms of the hypertriglyceridemia induced by tumor necrosis factor administration to rats. Biochim Biophys Acta 1989; 1001: 316–24.

    PubMed  Google Scholar 

  34. Feingold KR, Soued M, Staprans I, Gavin LA, Donahue ME, Huang BJ, Moser AH, Gulli R, Grunfeld C. The effect of TNF on lipid metabolism in the diabetic rat: Evidence that inhibition of adipose tissue lipoprotein lipase activity is not required for TNF induced hyperlipidemia. J Clin Invest 1989; 83: 1116–21.

    PubMed  Google Scholar 

  35. Argiles JM, Lopez-Soriano FJ, Evans RD, Williamson DH. Interleukin-I and lipid metabolism in the rat. Biochem J 1989; 259: 673–8.

    PubMed  Google Scholar 

  36. Feingold KR, Soued M, Serio MK, Adi S, Moser AH, Grunfeld C. The effect of diet on tumor necrosis factor stimulation of hepatic lipogenesis. Metabolism 1990; 39: 623–32.

    PubMed  Google Scholar 

  37. Grunfeld C, Verdier JA, Neese RA, Moser AH, Feingold KR. Mechanisms by which tumor necrosis factor stimulates hepatic fatty acid synthesisin vivo. J Lipid Res 1988; 29: 1327–35.

    PubMed  Google Scholar 

  38. Geelen MH, Harris RA, Beynan AC, McCune SA. Short-term hormonal control of hepatic lipogenesis. Diabetes 1980; 29: 1006–22.

    PubMed  Google Scholar 

  39. Nishikri K, Iritani N, Numa S. Levels of acetyl coenzyme A carboxylase and its effectors in rat liver after shortterm fat feeding. FEBS Lett 1973; 32: 19–21.

    PubMed  Google Scholar 

  40. Lane MD, Moss J, Polakis SE. Acetyl coenzyme A carboxylase. Curr Top Cell Regul 1974; 8: 139–96.

    PubMed  Google Scholar 

  41. Feingold KR, Soued M, Serio MK, Moser AH, Dinarello CA, Grunfeld C. Multiple cytokines stimulate hepatic lipid synthesisin vivo. Endocrinology 1989; 125: 267–74.

    PubMed  Google Scholar 

  42. Nathan CF. Secretory products of macrophages. J Clin Invest 1987; 79: 319–26.

    PubMed  Google Scholar 

  43. Grunfeld C, Soued M, Adi S, Moser AH, Dinarello A, Feingold KR. Evidence for two classes of cytokines that stimulate hepatic lipogenesis: relationships among tumor necrosis factor, interleukin-1 and interferon-alpha. Endocrinology 1990; 127: 46–56.

    PubMed  Google Scholar 

  44. Feingold KR, Serio MK, Adi S, Moser AH, Grunfeld C. Tumor necrosis factor stimulates hepatic lipid synthesis and secretion. Endocrinology 1989; 124: 2336–42.

    PubMed  Google Scholar 

  45. Feingold KR, Adi S, Staprans I, Moser AH, Neese R, Verdier JA, Doerrler W, Grunfeld C. Diet affects the mechanisms by which TNF stimulates hepatic triglyceride production. Am J Physiol (in press).

  46. Long CL. Energy balance and carbohydrate metabolism in infection and sepsis. Am J Clin Nutr 1977; 30: 1301–10.

    PubMed  Google Scholar 

  47. Beisel WR. Metabolic response to infection. In: Sanford JB, Luby JP, (eds.) The science of practice of clinical medicine. New York: Grune & Stratton, 1981: 28–35.

    Google Scholar 

  48. Wolfe RR. Glucose metabolism in sepsis and endotoxicosis. In: Powanda MC, Canonico PG (eds.) Infection: the physiologic and metabolic responses of the host. New York: Elsevier, 1981: 213–43.

    Google Scholar 

  49. Tracey KJ, Beutler B, Lowry SF, Merrywhether J, Wolpe S, Milsark IW, Hariri RJ, Fahey III TJ, Zentella A, Albert JD, Shires GT, Cerami A. Shock and tissue injury induced by recombinant human cachectin. Science 23: 470–3.

  50. Kettelhut IC, Fiers W, Goldberg AL. The toxic effects of tumor necrosis factorin vivo and their prevention by cyclooxygenase inhibitors. Proc Natl Acad Sci USA 1987; 84: 4273–7.

    PubMed  Google Scholar 

  51. Satomi N, Sakurai A, Haranaka K. Relationship of hypoglycemia to tumor necrosis factor production and antitumor activity: role of glucose, insulin and macrophages. J Nat Canc Inst 1985; 74: 1255–60.

    Google Scholar 

  52. Meszaros K, Lang CH, Bagby GJ, Spitzer JJ. Tumor necrosis factor increasesin vivo glucose utilization of macrophage-rich tissues. Biochem Biophys Res Comm 1987; 149: 1–6.

    PubMed  Google Scholar 

  53. Warren, RS, Starnes Jr. HF, Gabrilove JL, Oettgen HF, Brennan MF. The acute metabolic effects of tumor necrosis factor administration in humans. Arch. Surg. 1987; 122: 1396–1400.

    PubMed  Google Scholar 

  54. Warren RS, Starnes Jr. HF, Alcock N, Calvano S, Brennan MF. Hormonal and metabolic response to recombinant human tumor necrosis factor in rat:in vitro andin vivo. Am J Physiol 1988; 255: E206-E212.

    PubMed  Google Scholar 

  55. Mahony SM, Tisdale MJ. Induction of weight loss and metabolic alterations by human recombinant tumour necrosis factor. Br J Cancer 1988; 58: 345–9.

    PubMed  Google Scholar 

  56. Fraker DL, Merino MJ, Norton JA. Reversal of the toxic effects of cachectin by concurrent insulin administration. Am J Physiol 1989; 256: E725-E731.

    PubMed  Google Scholar 

  57. Evans DA, Jacobs DO, Wilmore DW. Tumor necrosis factor enhances glucose uptake by peripheral tissues. Am J Physiol 1989; 257: R1182-R1189.

    PubMed  Google Scholar 

  58. Darling G, Goldstein DS, Stull R, Gorschboth CM, Norton JA. Tumor necrosis factor: immune endocrine interaction. Surgery 1989; 106: 1155–60.

    PubMed  Google Scholar 

  59. Patton JS, Peters PM, McCabe J, Crase D, Hansen S, Chen AB. Development of partial tolerance to the gastrointestinal effects of high doses of recombinant tumor necrosis factor alpha in rodents. J Clin Invest 1987; 80: 1587–96.

    PubMed  Google Scholar 

  60. Warren, RS, Donner DB, Starnes Jr HF, Brennan F. Modulation of endogenous hormone action by recombinant human tumor necrosis factor. Proc Natl Acad Sci USA 1987; 84: 8619–22.

    PubMed  Google Scholar 

  61. Argiles JM, Lopez-Soriano FJ, Wiggins D, Williamson DH. Comparative effects of tumor necrosis factor alpha (cachectin), interleukin-1 beta and tumor growth on amino acid metabolism in the ratin vivo. Biochem J 1989; 261: 357–62.

    PubMed  Google Scholar 

  62. Starnes Jr HF, Warren RS, Jeevanandam M, Gabrilove JL, Larchian W, Oettgen HF, Brennan MF. Tumor necrosis factor and the acute metabolic response to tissue injury in man. J Clin Invest 1988; 82: 1321–5.

    PubMed  Google Scholar 

  63. Tracey KJ, Lowry SF, Fahey III TJ, Albert JD, Fong Y, Beutler B, Manague KR, Calano S, Wei H, Cerami A, Shires TG. Cachectin/tumor necrosis factor induces lethal shock and stress hormone responses in the dog. Surg Gynecol Obstet 1987; 164: 415–22.

    PubMed  Google Scholar 

  64. Tredget EE, Yu YM, Zhong S, Burini R, Okusawa S, Gelfand JA, Dinarello CA, Young VR, Burke JF. Role of interleukin-1 and tumor necrosis factor on energy metabolism in rabbits. Am J Physiol 1988; 255: E760-E768.

    PubMed  Google Scholar 

  65. Lee MD, Zentella A, Pekala PH, Cerami A. Effect of endotoxin-induced monokines on glucose metabolism in the muscle cell line L-6. Proc Natl Acad Sci USA 1987; 84: 2590–4.

    PubMed  Google Scholar 

  66. Del Rey A, Besedovsky HO. Interleukin-1 affects glucose homeostasis. Am J Physiol 1987; 253: R794-R798.

    PubMed  Google Scholar 

  67. Del Rey A, Besedovsky HO. Antidiabetic effects of interleukin-1. Proc Natl Acad Sci USA 1989; 86: 5943–7.

    PubMed  Google Scholar 

  68. Lang CH, Dobrescu C. Interleukin-1 induced increases in glucose utilization are insulin mediated. Life Sciences 1989; 45: 2127–34.

    PubMed  Google Scholar 

  69. Koivisto VA, Pelkonen R, Cantell K. Effect of interferon on glucose tolerance and insulin sensitivity. Diabetes 1989; 38: 641–7.

    PubMed  Google Scholar 

  70. Edgehl RH, Meguid MM, Aun F. The importance of the endocrine and metabolic responses to shock and trauma. Crit Care Med 1977; 5: 257–63.

    PubMed  Google Scholar 

  71. Moberg GP. Site of action of endotoxins on hypothalamic pituitary-adrenal axis. Am J Physiol 1971; 220: 397–400.

    PubMed  Google Scholar 

  72. Sharp BM, Matta SG, Peterson PK, Newton R, Chao C and McAllen K. Tumor necrosis factor-alpha is a potent ACTH secretagogue: Comparison to interleukin-1 beta. Endocrinology 1989; 124: 3131–3.

    PubMed  Google Scholar 

  73. Kehrer P, Turnill D, Dayer JM, Muller AF, Gaillard RC. Human interleukin-1 alpha and beta but not tumor necrosis factor alpha stimulate ACTH release from rat pituitary cells in a prostaglandin E2 and cAMP independent manner. Neuroendo 1988; 48: 160–6.

    Google Scholar 

  74. Milenkovic L, Rettori V, Snyder GD, Beutler B, McCann SM. Cachectin alters anterior pituitary hormone release by a direct actionin vitro. Proc Natl Acad Sci USA 1989; 86: 2418–22.

    PubMed  Google Scholar 

  75. Besedovsky H, Del Rey A, Sorkin E, Dinarello CA. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 1986; 233: 652–4.

    PubMed  Google Scholar 

  76. Uehara A, Gottschall PE, Dahl RR, Arimura A. Interleukin-1 stimulates ACTH release by an indirect action which requires endogenous corticotropin releasing factor. Endocrinology 1987; 121: 1580–2.

    PubMed  Google Scholar 

  77. Rivier C, Vale W, Brown M. In the rat, interleukin-1 alpha and beta stimulate adrenocorticotropin and catecholamine release. Endocrinology 1989; 125: 3096–102.

    PubMed  Google Scholar 

  78. Rivier C, Chizzonite R, Vale W. In the mouse, the activation of the hypothalamic-pituitary-adrenal axis by a lipopolysaccharide (endotoxin) is mediated through interleukin-1. Endocrinology 1989; 125: 2800–5.

    PubMed  Google Scholar 

  79. Sapolsky R, Rivier C, Yamamoto G, Plotsky P, Vale W. Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 1987; 238: 522–4.

    PubMed  Google Scholar 

  80. Berkenbosch F, Van Oers J, Del Rey A, Tilders F, Besedovsky H. Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 1987; 238: 524–6.

    PubMed  Google Scholar 

  81. Wolosky BMRNJ, Smith EM, Meyer III WJ, Fuller GM, Blalock JE. Corticotropin-releasing activity of monokines. Science 1985; 230: 1035–7.

    PubMed  Google Scholar 

  82. Bernton EW, Beach JE, Holaday JW, Smallridge RC, Fein HG. Release of multiple hormones by a direct action of interleukin-1 on pituitary cells. Science 1987; 238: 519–21.

    PubMed  Google Scholar 

  83. Lumpkin MD. The regulation of ACTH secretion by IL-1. Science 1987; 238: 452–4.

    PubMed  Google Scholar 

  84. Roh MS, Drazenovich KA, Barbose JJ, Dinarello CA, Cobb CF. Direct stimulation of the adrenal cortex by interleukin-1. Surgery 1987; 102: 140–6.

    PubMed  Google Scholar 

  85. Blalock JE, Harp C. Interferon and adrenocorticotropin hormone induction of steroidogenesis, melanogenesis and antiviral activity. Arch Virol 1981; 67: 45–9.

    PubMed  Google Scholar 

  86. Goldstein D, Gockerman J, Krishnan R, Ritchie Jr J, Tso CY, Hood LE, Ellinwood E, Laszlo J. Effects of gamma-interferon on the endocrine system: Results from a phase I study. Cancer Research 1987; 47: 6397–401.

    PubMed  Google Scholar 

  87. Naitoh Y, Fukata J, Tominaga T, Nakai Y, Tami S, Mori K, Imura H. Interleukin-6 stimulates the secretion of adrenocorticotropin hormone in conscious freely moving rats. Biochem. Biophys. Res. Commun. 1988; 155: 1459–63.

    PubMed  Google Scholar 

  88. Denicoff KD, Durkin TM, Lotze MT, Quinlan PE, Davis CL, Listwak SJ, Rosenberg SA, Rubinow DR. The neuroendocrine effects of interleukin-2 treatment. J Clin Endocrinol Metab 1989; 69: 402–10.

    PubMed  Google Scholar 

  89. Wartofsky L, Durman KD. Alterations in thyroid function in patients with systemic illness: the “euthyroid sick syndrome”. Endocrinology Reviews 1982; 3: 164–217.

    Google Scholar 

  90. Chopra IJ, Hershman JM, Pardridge WM, Nicoloff JT. Thyroid function in non-thyroidal illnesses. Annals of Int Med 1983; 98: 946–57.

    Google Scholar 

  91. Wehmann RE, Gregerman RI, Burns WH, Saral R, Santos GW. Suppression of thyrotropin in the low-thyroxine state of severe non-thyroidal illness. NEJM 1985; 312: 546–52.

    PubMed  Google Scholar 

  92. Ozawa M, Sato K, Han DC, Kawakami M, Tsushima T, Shizume K. Effects of tumor necrosis factor-alpha/ cachectin on thyroid hormone metabolism in mice. Endocrinology 1988; 123: 1461–7.

    PubMed  Google Scholar 

  93. Pang X-P, Hershman JM, Mirell CJ, Pekary AE. Impairment of hypothalamic-pituitary-thyroid function in rats treated with human recombinant tumor necrosis factoralpha (cachectin). Endocrinology 1989; 125: 76–84.

    PubMed  Google Scholar 

  94. Rettori V, Jurcovicova J, McCann SM. Central action of interleukin-1 in altering the release of TSH, growth hormone, and prolactin in the male rat. J Neurosci Res 1987; 18: 179–83.

    PubMed  Google Scholar 

  95. Dubuis J-M, Dayer J-M, Siegrist-Kaiser CA, Burger AG. Human recombinant interleukin-1 beta decreases plasma thyroid hormone and thyroid stimulating hormone levels in rats. Endocrinology 1988; 123: 2175–81.

    PubMed  Google Scholar 

  96. Fujii T, Sato K, Ozawa M, Kasono K, Imamura H, Kanaji Y, Tsushima T, Shizume K. Effect of interleukin1 (IL-1) on thyroid hormone metabolism in mice: stimulation by IL-1 of iodothyronine 5′-deiodinating activity (Type I) in the liver. Endocrinology 1989; 124: 167–74.

    PubMed  Google Scholar 

  97. Tracey KJ, Wei H, Manogue KR. Cachectin/tumor necrosis factor induces cachexia, anemia and inflammation. J Exp Med 1988; 167: 1211–27.

    PubMed  Google Scholar 

  98. Socher SH, Friedman A, Martinez D. Recombinant human-tumor necrosis factor induces acute reductions in food-intake and body-weight in mice. J Exp Med 1988; 167: 1957–62.

    PubMed  Google Scholar 

  99. Stovroff MC, Fraker DL, Swedenborg JA, Norton JA. Cachectin/tumor necrosis factor; a possible mediator of cancer anorexia in the rat. Cancer Research 1988; 48: 4567–72.

    PubMed  Google Scholar 

  100. Kramer SM, Aggarwal BB, Essalu TE, McCabe SE, Ferraiolo BC, Figari IS, Palladino Jr MA. Characterization of thein vitro andin vivo species preference of human and murine tumor necrosis factor alpha. Cancer Research 1988; 48: 920–5.

    PubMed  Google Scholar 

  101. Grunfeld C, Wilking H, Neese R, Gulli R, Gavin LA, Moser AH, Serio MK, Feingold KR. Persistence of the hypertriglyceridemic effect of tumor necrosis factor despite development of tachyphylaxis to its anoretic/cachectic effects in rats. Cancer Research 1989; 49: 2554–60.

    PubMed  Google Scholar 

  102. Hellerstein MK, Meydani SN, Meydani M, Wu K, Dinarello CA. Interleukin-1 induced anorexia in the rat. J Clin Invest 1989; 84: 228–35.

    PubMed  Google Scholar 

  103. Sherwin SA, Knost JA, Fein S, Abrans PG, Foon KA, Ochs JJ, Schoenberger C, Maluish AE, Oldham RK. A multiple-dose phase I trial of recombinant leukocyte A interferon in cancer patients. J Am Med Assoc 1982; 248: 2461–6.

    Google Scholar 

  104. Vadhan-Raj S, Al-Katib A, Bhalla R, Pelus L, Nathan CF, Sherwin SA, Oettgen HF, Krown SE. Phase I trial of recombinant interferon gamma in cancer patients. J Clin Oncol 1986; 4: 137–46.

    PubMed  Google Scholar 

  105. Di Bisceglie AM, Martin P, Kassianides C, Lisker-Mclman M, Murray L, Waggoner J, Goodman Z, Banks SM, Hoofnagle JH. Recombinant interferon alfa therapy for chronic hepatitis C. N Engl J Med 1989; 321: 1506–10.

    PubMed  Google Scholar 

  106. Grunfeld C, Kotler DP, Hamadeh R, Tierney A, Wang J, Pierson Jr RN. Hypertriglyceridemia in the acquired immunodeficiency syndrome. Am J Med 1989; 86: 27–31.

    Google Scholar 

  107. Lahdevirta J, Maury CPJ, Teppo AM, Repo H. Elevated levels of circulating cachectin/tumor necrosis factor in patients with acquired immunodeficiency syndrome. Am J Med 1988; 85: 289–91.

    PubMed  Google Scholar 

  108. Reddy MM, Sorrell SJ, Lance M, Grieco MH. Tumor necrosis factor and HIV P24 antigen serum of HIVinfected population. J AIDS 1988; 1: 436–40.

    Google Scholar 

  109. Waage A, Halstensen A, Espevik T. Association between tumor necrosis factor in serum and fatal outcome in patients with meningococcal disease. The Lancet 1987; i: 355–7.

    Google Scholar 

  110. Waage A, Espevik T, Lamvik J. Detection of tumor necrosis factor-like cytotoxicity in serum from patients with septicaemia but not from untreated cancer patients. Scand J Immunol 1986; 24: 739–43.

    PubMed  Google Scholar 

  111. Girardin E, Grau GE, Dayer J-M, Roux-Lombard P, the J5 Study Group and Lambert P-H. Tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura. New Engl J Med 1988; 319: 397–400.

    PubMed  Google Scholar 

  112. Scuderi P, Lam KS, Ryan KJ, Petersen E, Sterline KR, Finley PR, Ray CG, Slymer DJ, Salmon SE. Raised serum levels of tumor necrosis factor in parasitic infections. The Lancet 1986; ii: 1364–5.

    Google Scholar 

  113. Balkwill F, Burke F, Talbot D, Tavernier J, Osborne R, Naylor S, Durbin H, Fiers W. Evidence for tumor necrosis factor/cachectin production in cancer. The Lancet November 28, 1987: 1229-32.

    Google Scholar 

  114. Socher SH, Martinez D, Craig JB, Kuhn JG, Oliff A. Tumor necrosis factor not detectable in patients with clinical cancer cachexia. J Leuk Biol 1988; 43: 436–44.

    Google Scholar 

  115. Michie HR, Sherman ML, Spriggs DR, Rounds J, Christie M, Wilmore DW. Chronic TNF infusion causes anorexia but not accelerated nitrogen loss. Ann Surg 1989; 209: 19–24.

    PubMed  Google Scholar 

  116. Rothstein JL, Schreiber H. Synergy between tumor necrosis factor and bacterial components in causing hemorrhagic necrosis and lethal shock in normal mice. Proc Natl Acad Sci USA 1988; 85: 607–11.

    PubMed  Google Scholar 

  117. Oxaki Y, Oyama T, Kume S. Exacerbation of toxic effects by endotoxin contamination of recombinant human tumor necrosis factor. Cancer Chemother Pharmacol 1989; 23: 231–7.

    PubMed  Google Scholar 

  118. Okusawa S, Gelfand JA, Ikejima T, Connolly RJ, Dinarello CA. Interleukin-1 induces a shock-like state in rabbits. J Clin Invest 1988; 81: 1162–72.

    PubMed  Google Scholar 

  119. Oliff A, Defeo-Jones D, Boyer M, Martinez D, Kiefer D, Vuocolo G, Wolfe A, Socher SH. Tumors secreting human TNF/cachectin induce cachexia in mice. Cell 1987; 50: 555–63.

    PubMed  Google Scholar 

  120. Bartholeyns J, Freudenberg M, Galanos C. Growing tumors induce hypersensitivity to endotoxin and tumor necrosis factor. Infect Immun 1987; 55: 2230–3.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grunfeld, C., Feingold, K.R. The metabolic effects of tumor necrosis factor and other cytokines. Biotherapy 3, 143–158 (1991). https://doi.org/10.1007/BF02172087

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02172087

Key words

Navigation