Skip to main content
Log in

Mycorrhizal relationships in bottomland hardwood forests of the southern United States

  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Mycorrhizae are important in the functioning of forest ecosystems worldwide, and play a critical role in water uptake, nutrient acquisition, and prevention of feeder root disease. The majority of mycorrhizal research has been conducted on upland sites, especially in coniferous ecosystems and in commercial agricultural production. However, the maintenance and restoration of bottomland hardwood (BLH) forest ecosystems in the southern United States is of increasing concern. Both ectomycorrhizae and endomycorrhizae are present in BLH forests, although the dominance of one or the other type depends primarily on both the tree species and the hydrologic regime. Ectomycorrhizae tend to be more sensitive to flooding, while endomycorrhizal infection can be present even in permanently flooded soils. The mycorrhizae of sweetgum (Liquidambar styraciflua), green ash (Fraxinus pennsylvanica), and the oaks (Quercus spp.) have been studied most due to their economic importance.

Considerable work is still needed to better understand mycorrhizal relationships in BLH ecosystems and associated trees, both with respect to infectivity and nutrient cycling. Such information may be necessary for restoration of BLH forests on old agricultural fields, or to maintain the productivity of BLH forests after harvest. This paper summarizes studies on mycorrhizae relationships in BLH forests and suggests future work necessary for understanding the role mycorrhizae can have in managing these ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott, L.K. and Gazey, C. 1994. An ecological view of the formation of VA mycorrhizas. Plant and Soil 159: 69–78.

    Google Scholar 

  • Abbott, L.K. and Robson, A.D. 1991. Factors influencing the occurrence of vesicular-arbuscular mycorrhizas. Agr. Ecosys. Environ. 35: 121–150.

    Article  Google Scholar 

  • Abuzinadah, R.A. and Read, D.J. 1989a. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants IV. The utilization of peptides by birch (Betula pendula L.) infected with different mycorrhizal fungi. New Phytol. 112: 55–60.

    Google Scholar 

  • Abuzinadah, R.A. and Read, D.J. 1989b. The role of proteins in the nitrogen nutrition on ectomycorrhizal plants V. Nitrogen transfer in birch (Betula pendula) grown in association with mycorrhizal and non-mycorrhizal fungi. New Phytol. 112: 61–68.

    Google Scholar 

  • Allen, M.F. 1991. The Ecology of Mycorrhizae. Cambridge Univ. Press, Cambridge, England.

    Google Scholar 

  • Allen, M.F. (ed.) 1992. Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York.

    Google Scholar 

  • Andersen, C.P., Sucoff, E.I. and Dixon, R.K. 1987. The influence of low soil temperature on the growth of vesiculararbuscular mycorrhizalFraxinus pennsylvanica. Can. J. For. Res. 17: 951–956.

    Google Scholar 

  • Andersen, C.P., Markhart, A.H., Dixon, R.K. and Sucoff, E.I. 1988. Root hydraulic conductivity of vesicular-arbuscular mycorrhizal green ash seedlings. New Phytol. 109: 456–471.

    Google Scholar 

  • Antibus, R.K., Trappe, J.M. and Linkins, A.E. 1980. Cyanide resistant respiration inSalix nigra endomycorrhizae. Can. J. Bot. 58: 14–20.

    Google Scholar 

  • Arnebrant, K., Ek, H., Finlay, R.D. and Soderstrom, B. 1993. Nitrogen translocation betweenAlnus glutinosa (L.) Gaertn. seedlings inoculated withFrankia sp. andPinus contorta Doug. ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol. 124: 231–242.

    Google Scholar 

  • Aust, W.M. and Lea, R. 1991. Soil temperature and organic matter in a disturbed forested wetland. Soil Sci. Soc. Am. J. 55: 1741–1746.

    Google Scholar 

  • Beckjord, P.R., Melhuish, J.H., Jr., McIntosh, M.S. and Hacskaylo, E. 1983. Effects of nitrogen fertilization on growth and ectomycorrhizal formation ofQuercus alba, Q. rubra, Q. falcata, andQ. falcata var.pagodifolia. Can. J. Bot. 61: 2507–2514.

    Google Scholar 

  • Bledsoe, C.S., Tennyson, K. and Lopushinsky, W. 1982. Survival and growth of outplanted Douglas-fir seedlings inoculated with mycorrhizal fungi. Can. J. For. Res. 12: 720–723.

    Google Scholar 

  • Bolan, N.S. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil 134: 189–207.

    Article  Google Scholar 

  • Borges, R.G. and Chaney, W.R. 1989. Root temperature affects mycorrhizal efficacy inFraxinus pennsylvanica Marsh. New Phytol. 112: 411–417.

    Google Scholar 

  • Borges, R.G. and Chaney, W.R. 1993. Solar irradiance and the development of endomycorrhizal green ash seedlings. Tree Physiol. 13: 227–238.

    PubMed  Google Scholar 

  • Bougher, N.L. and Malajczuk, N. 1990. Effects of high soil moisture on formation of ectomycorrhizas and growth of karri (Eucalyptus diversicolor) seedlings inoculated withDescolea maculata, Pisolithus tinctorius andLaccaria laccata. New Phytol. 114: 87–91.

    Google Scholar 

  • Boyd, R., Furbank, R.T. and Read, D.J. 1986. Ectomycorrhiza and the water relations of trees.In: Gianinazzi-Pearson, V. and Gianinazzi, S. (eds.), Mycorrhizae: Physiology and Genetics. pp. 690–693. Institut National de la Recherche Agronomique, Dijon, France.

    Google Scholar 

  • Brown, R.W., Schultz, R.C. and Kormanik, P.P. 1981. Response of vesicular-arbuscular endomycorrhizal sweetgum seedlings to three nitrogen fertilizers. For. Sci. 27: 413–420.

    Google Scholar 

  • Coleman, M.D., Bledsoe, C.S. and Lopushinsky, W. 1989. Pure culture response of ectomycorrhizal fungi to imposed water stress. Can. J. Bot. 67: 29–39.

    Google Scholar 

  • Conner, W.H. 1994. Effect of forest management practices on southern forested wetland productivity. Wetlands 14: 27–40.

    Google Scholar 

  • Daniels Hetrick, B.A. 1984. Ecology of VA mycorrhizal fungi.In: Powell, C.L. and Bagyaraj, D.J. (eds.), VA Mycorrhiza. pp. 35–55. CRC Press, Boca Raton.

    Google Scholar 

  • DeMars, B.G. and Boerner, R.E.J. 1995. Mycorrhizal dynamics of three woodland herbs of contrasting phenology along topographic gradients. Am. J. Bot. 82: 1426–1431.

    Google Scholar 

  • Dodd, J.C., and Thomson, B.D. 1994. The screening and selection of inoculant arbuscular-mycorrhizal and ectomycorrhizal fungi. Plant and Soil 159: 149–158.

    Google Scholar 

  • Douds, D.D., Jr. and Chaney, W.R. 1982. Correlation of fungal morphology and development to host growth in a green ash mycorrhiza. New Phytol. 92: 519–526.

    Google Scholar 

  • Douds, D.D., Jr. and Chaney, W.R. 1986. The effect of high nutrient addition upon seasonal patterns of mycorrhizal development, host growth, and root phosphorus and carbohydrate content inFraxinus pennsylvanica. New Phytol. 103: 91–106.

    Google Scholar 

  • Eason, W.R., Newman, E.I. and Chuba, P.N. 1991. Specificity of interplant cycling of phosphorus: the role of mycorrhizas. Plant and Soil 137: 267–274.

    Article  Google Scholar 

  • Faber, B.A., Zasoski, R.J., Munns, D.N. and Shackel, K. 1991. A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can. J. Bot. 69: 87–94.

    Google Scholar 

  • Filer, T.H., Jr. 1975. Mycorrhizae and soil microflora in a green-tree reservoir. For. Sci. 21: 36–39.

    Google Scholar 

  • Finlay, R.D. and Read, D.J. 1986. The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol. 103: 157–165.

    Google Scholar 

  • Finlay, R.D., Frostegard, A. and Sonnerfeldt, A.-M. 1992. Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis withPinus contorta Dougl. ex Loud. New Phytol. 120: 105–115.

    Google Scholar 

  • Francis, R. and Read, D.J. 1994. Mutualism andantagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can. J. Bot. 73 (Suppl. 1): 1301–1309.

    Google Scholar 

  • Frey, B. and Schuepp, H. 1993. A role of vesicular-arbuscular mycorrhizal fungi in facilitating interplant nitrogen transfer. Soil Biol. and Biochem. 25: 651–658.

    Article  Google Scholar 

  • Gadgil, P.D. 1972. Effect of waterlogging on mycorrhizas of radiata pine and Douglas fir. NZ J. For. Sci. 2: 222–227.

    Google Scholar 

  • Gagnon, J. and Langlois, C.G. 1987. Growth of containerized jack pine seedlings inoculated with different ectomycorrhizal fungi under a controlled fertilization schedule. Can. J. For. Res. 17: 840–845.

    Google Scholar 

  • George, E. and Marschner, H. 1995. Nutrient and water uptake by roots of forest trees. Z. Pflanz. Bodenk. 158: 1–11.

    Google Scholar 

  • Grand, L.F. 1969. A beaded endotrophic mycorrhiza of northern and southern red oak. Mycologia 61: 408–409.

    Google Scholar 

  • Harvey, A.E., Jurgensen, M.F., Larsen, M.J. and Schlieter, J.A. 1986. Distribution of active ectomycorrhizal short roots in forest soils of the Inland Northwest: effects of site and disturbance. USDA For. Serv. Res. Pap. InT-374. 8p.

  • Hepper, C.M. and Warner, A. 1983. Role of organic matter in growth of a vesicular-marbuscular mycorrhizal fungus in soil. Trans. Br. Mycol. Soc. 81: 155–156.

    Google Scholar 

  • Hook, D.D. 1984. Adaptations to flooding with fresh water.In: Kozlowski, T.T. (ed.), Flooding and Plant Growth. pp. 265–294. Academic Press, Orlando, FL.

    Google Scholar 

  • Janos, D.P. 1992. Heterogeneity and scale in tropical vesicular-arbuscular mycorrhiza formation.In: Read, D.J., et al. (eds.), Mycorrhizas in Ecosystems. pp. 276–282. CAB International, United Kingdom.

    Google Scholar 

  • Jasper, D.A., Abbott, L.K. and Robson, A.D. 1989. Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytol. 112: 93–99.

    Google Scholar 

  • Jasper, D.A., Abbott, L.K. and Robson, A.D. 1991. The effect of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol. 118: 471–476.

    Google Scholar 

  • Jeffries, P. 1995. Biology and ecology of mycoparasitism. Can. J. Bot. 73 (Suppl. 1): S1284-S1290.

    Google Scholar 

  • Keeley, J.E. 1980. Endomycorrhizae influence growth of blackgum seedlings in flooded soils. Am. J. Bot. 67: 6–9.

    Google Scholar 

  • Khan, A.G. 1974. The occurrence of mycorrhizas in halophytes, hydrophytes and xerophytes and of Endogene spores in adjacent soils. J. Gen. Microbiol. 81: 7–17.

    Google Scholar 

  • Khan, A.G. 1993. Occurrence and importance of mycorrhizae in aquatic trees of N.S. Wales, Australia. Mycorrhiza 3: 31–38.

    Article  Google Scholar 

  • Kormanik, P.P. 1985. Development of vesicular-arbuscular mycorrhizae in a young sweetgum plantation. Can. J. For. Res. 15: 1061–1064.

    Google Scholar 

  • Kormanik, P.P. 1986. Lateral root morphology as an expression of sweetgum seedling quality. For. Sci. 32: 595–604.

    Google Scholar 

  • Kormanik, P.P., Bryan, W.C. and Schultz, R.C. 1977. Influence of endomycorrhizae on growth of sweetgum seedlings from eight mother trees. For. Sci. 23: 500–506.

    Google Scholar 

  • Kormanik, P.P., Bryan, W.C. and Schultz, R.C. 1981. Effects of three vesicular-arbuscular mycorrhizal fungi on sweetgum seedlings from nine mother trees. For. Sci. 27: 327–335.

    Google Scholar 

  • Kormanik, P.P., Schultz, R.C. and Bryan, W.C. 1982. The influence of vesicular-arbuscular mycorrhizae on the growth and development of eight hardwood tree species. For. Sci. 28: 531–539.

    Google Scholar 

  • Kropp, B.R. and Langlois, C.-G. 1990. Ectomycorrhizae in reforestation. Can. J. For. Res. 20: 438–451.

    Google Scholar 

  • Kühn, K.D. 1991. Distribution of vesicular-arbuscular mycorrhizal fungi on a fallow agriculture site. II. Wet habitat. Angew. Bot. 65: 187–203.

    Google Scholar 

  • Lamar, R.T. and Davey, C.B. 1988. Comparative effectivity of threeFraxinus pennsylvanica vesicular-arbuscular mycorrhizal fungi in a high phosphorus soil. New Phytol. 109: 171–181.

    Google Scholar 

  • Lockaby, B.G., Stanturf, J.A. and Messina, M. 1997. Effects of silvicultural activity on ecological processes in flood-plain forests of the southern United States: a review of existing reports. For. Ecol. and Manag. 90: 93–100.

    Article  Google Scholar 

  • Lodge, D.J. 1989. The influence of soil moisture and flooding on formation of VA-endo- and ectomycorrhizae in Populus and Salix. Plant and Soil 117: 243–253.

    Google Scholar 

  • Lodge, D.J. and Wentworth, T.R. 1990. Negative associations among VA-mycorrhizal fungi and some ectomycorrhizal fungi inhabiting the same root. Oikos 57: 347–356.

    Google Scholar 

  • Marshner, H. and Dell, B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159: 89–102.

    Google Scholar 

  • Marx, D.H. and Cordell, C.E. 1988. Specific ectomycorrhizae improve reforestation and reclamation in the eastern United States.In: Lalonde, M. and Piche, Y. (eds), Canadian Workshop on Mycorrhizae in Forestry. pp. 75–86. Laval, Canada.

    Google Scholar 

  • McKevlin, M.R., Hook, D.D., McKee, W.H., Jr., Wallace, S.U. and Woodruff, J.R. 1987. Phosphorus allocation in flooded loblolly pine seedlings in relation to iron uptake. Can. J. For. Res. 17: 1572–1576.

    Google Scholar 

  • Mitsch, W.J. and Gosselink, J.G. 1993. Wetlands. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Mosse, B., Stribley, D.P. and LeTacon, F. 1981. Ecology of mycorrhizae and mycorrhizal fungi. Adv. Micro. Ecol. 5: 137–210.

    Google Scholar 

  • Newman, E.I. and Reddell, P. 1987. The distribution of mycorrhizas among families of vascular plants. New Phytol. 106: 745–751.

    Google Scholar 

  • Nyland, J. and Wallander, H. 1989. Effects of ectomycorrhizas on host growth and carbon balance in a semihydroponic cultivation system. New Phytol. 112: 389–398.

    Google Scholar 

  • O'Dell, T.E., Castellano, M.A. and Trappe, J.M. 1992. Biology and application of ectomycorrhizal fungi.In: Metting, F.B. Jr. (ed.), Microbial Ecology. pp. 379–415. Marcel Decker, New York.

    Google Scholar 

  • Osonubi, O., Mulongoy, K., Awotoye, O.O., Atayese, M.O. and Okali, D.U.U. 1991. Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings. Plant and Soil 136: 131–143.

    Google Scholar 

  • Pezeshki, S.R. 1994. Plant responses to flooding.In: Wilkinson, R.E. (ed.), Plant-Environment Interactions. pp. 289–321. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Pfleger, F.L. and Linderman, R.G. (eds.). 1994. Mycorrhizae and plant health. American Pathological Society, St. Paul, MN.

    Google Scholar 

  • Pope, P.E., Chaney, W.R., Rhodes, J.D. and Woodhead, S.H. 1983. The mycorrhizal dependency of four hardwood tree species. Can. J. Bot. 61: 412–417.

    Google Scholar 

  • Read, D.J., 1985. Non-nutritional effects of mycorrhizal infection.In: Gianinazzi-Pearson, V. and Gianinazzi, S. (eds), Mycorrhizae: Physiology and Genetics. pp. 169–176. Institut National de la Recherche Agronomique, Dijon, France.

    Google Scholar 

  • Read, D.J. and Boyd, R. 1986. Water relations of mycorrhizal fungi and their host plants. In: Water, Fungi and Plants.In: Ayers, P.G. and Boyd, L. (eds), pp. 287–303. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Reid, C.P.P. and Bowen, G.D. 1979. Effects of soil moisture on V/A mycorrhiza formation and root development in Medicago.In: Harley, J.L. and Russell, R.S. (eds), The Soil Root Interface. pp. 211–220. Academic Press, London.

    Google Scholar 

  • Richter, D.L. and Bruhn, J.N. 1989. Revival of saprotrophic and mycorrhizal basidiomycete cultures from cold storage in sterile water. Can. J. Microbiol. 35: 1055–1060.

    Google Scholar 

  • Rickerl, D.H., Sancho, F.O. and Ananth, S. 1994. Vesicular-arbuscular endomycorrhizal colonization of wetland plants. J. Environ. Qual. 23: 913–916.

    Google Scholar 

  • Riffle, J.W. 1980. Growth and endomycorrhizal development of broadleaf seedlings in fumigated nursey soil. For. Sci. 26: 403–413.

    Google Scholar 

  • Ruiz-Lozano, J.M. and Azcon, R. 1996. Viability and infectivity of mycorrhizal spores after long term storage in soils with different water potenials. Appl. Soil Ecol. 3: 183–186.

    Article  Google Scholar 

  • Safir, G.R. (ed.). 1987. Ecophysiology of VA Mycorrhizal Plants. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Schultz, R.C. and Kormanik, P.P. 1982. Vesicular-arbuscular mycorrhiza and soil fertility influence mineral concentrations in seedlings of eight hardwood species. Can. J. For. Res. 12: 829–834.

    Google Scholar 

  • Schultz, R.C., Kormanik, P.P. and Bryan, W.C. 1981. Effects of fertilization and vesicular-arbuscular mycorrhizal inoculation on growth of hardwood seedlings. Soil Sci. Soc. Am. J. 45: 961–965.

    Google Scholar 

  • Schultz, R.C., Kormanik, P.P., Bryan, W.C. and Brister, G.H. 1979. Vesicular-arbuscular mycorrhiza influence growth but not mineral concentrations in seedlings of eight sweetgum families. Can. J. For. Res. 9: 218–223.

    Google Scholar 

  • Sharpe, R.R. and Marx, D.H. 1986. Influence of soil pH andPisolithus tinctorius ectomycorrhizae on growth and nutrient uptake of pecan seedlings. HortScience 21: 1388–1390.

    Google Scholar 

  • Shepard, J.P. 1994. Effects of forest management on surface water quality in wetland forests. Wetlands 14: 18–26.

    Google Scholar 

  • Shuja, N., Gilani, U. and Khan, A.G. 1971. Mycorrhizal associations in some angiosperm trees around New University Campus, Lahore. Pak. J. Forest. 21: 367–374.

    Google Scholar 

  • Simmons, G.L. and Pope, P.E. 1987. Influence of soil compaction and vesicular-arbuscular mycorrhizae on root growth of yellow poplar and sweetgum seedlings. Can. J. For. Res. 17: 970–975.

    Google Scholar 

  • Simmons, G.L. and Pope, P.E. 1988. Influence of soil water potential and mycorrhizal colonization on root growth of yellow poplar and sweetgum seedlings grown in compacted soil. Can. J. For. Res. 18: 1392–1396.

    Google Scholar 

  • Slankis, V. 1974. Soil factors influencing formation of mycorrhizae. Ann. Rev. Phytopath. 12: 437–457.

    Article  Google Scholar 

  • Solaiman, M.Z. and Hirata, H. 1995. Effects of indigenous arbuscular mycorrhizal fungi in paddy fields on rice growth and N, P, K nutrition under different water regimes. Soil Sci. Plant. Nutr. 41: 505–514.

    Google Scholar 

  • Stahl, P.D., Williams, S.E. and Christensen, M. 1988. Efficacy of native vesicular-arbuscular mycorrhizal fungi after severe soil disturbance. New Phytol. 110: 347–354.

    Google Scholar 

  • Stenstrom, E. 1991. The effects of flooding on the formation of ectomycorrhizae in Pinus sylvestris seedlings. Plant and Soil 131: 247–250.

    Google Scholar 

  • Stribley, D.P. 1989. Present and future value of mycorrhizal inoculants.In: McDonald, R.M. and Campbell, R.E. (eds), Microbial Inoculation of Crop Plants. pp. 49–65. IRL Press, Oxford, U.K.

    Google Scholar 

  • Sylvia, D.M. and Williams, S.E. 1992. Vesicular-arbuscular mycorrhizae and environmental stress.In: Mycorrhizae in Sustainable Agriculture. pp. 101–123. American Society of Agronomy, Special Publication No. 54. Madison, WI.

  • Taylor, J.R., Cardamone, M.A. and Mitsch, W.J. 1990. Bottomland hardwood forests: their functions and values.In: Gosselink, J.G., Lee, J.C. and Muir, T.A. (eds), Ecological Processes and Cumulative Impacts: Bottomland Hardwood Wetland Ecosystems. pp. 24–86. Lewis Publishers, Inc., Chelsea, MI.

    Google Scholar 

  • Vilarino, A. and Arines, J. 1990. An instrumental modification of Gerdemann and Nicolson's method for extracting VAM fungal spores from soil samples. Plant and Soil 121: 211–215.

    Article  Google Scholar 

  • Vozzo, J.A. and Hacskaylo, E. 1974. Endo-ectomycorrhizal associations in five Populus species. Bull. Torrey Bot. Club 101: 182–186.

    Google Scholar 

  • Walbridge, M.R. and Lockaby, B.G. 1994. Effects of forest management on biogeochemical functions in southern wetlands. Wetlands 14: 10–17.

    Google Scholar 

  • Watson, G.W., von der Heide-Spravka, K.G. and Howe, V.K. 1990. Ecological significance of endo-/ectomycorrhizae in the oak sub-genus Erythobalanus. Arborcult. J. 14: 107–116.

    Google Scholar 

  • Wetzel, P.R. and van der Valk, A.G. 1996. Vesicular-arbuscular mycorrhizae in prairie pothole wetland vegetation in Iowa and North Dakota. Can. J. Bot. 74: 883–890.

    Google Scholar 

  • Wharton, C.H., Kitchens, W.M., Pendleton, E.C. and Sipe, T.W. 1982. The ecology of bottomland hardwood swamps of the Southeast: a community profile. U.S. Fish and Wildlife Service. Washington, D.C. FWS/OSB-81/37.

    Google Scholar 

  • Whittingham, J. and Read, D.J. 1982. Vesicular-arbuscular mycorrhiza in natural vegetation systems. III. Nutrient transfer between plants with mycorrhizal interconnections. New Phytol. 90: 277.

    Google Scholar 

  • Wigley, T.B. and Roberts, T.H. 1994. A review of wildlife changes in southern bottomland hardwoods due to forest management practices. Wetlands 14: 41–48.

    Google Scholar 

  • Woodroof, N.C. 1933. Pecan mycorrhizas. Georgia Experiment Station, Bulletin, 178.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurgensen, M.F., Richter, D.L., Davis, M.M. et al. Mycorrhizal relationships in bottomland hardwood forests of the southern United States. Wetlands Ecol Manage 4, 223–233 (1996). https://doi.org/10.1007/BF02150536

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02150536

Keywords

Navigation