Skip to main content
Log in

Stagnation-point viscous flow of an incompressible fluid between porous plates with uniform blowing

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

The axially-symmetric laminar flow of an incompressible viscous fluid resulting from uniform injection through two parallel porous plates is analyzed. An exact numerical solution as well as asymptotic solutions for high and low Reynolds numbers are obtained. It is found that the velocity component normal to the porous plates is everywhere independent of radial position. This property of uniform accessibility may make this flow geometry a useful experimental tool analogous to the rotating disc. The analysis of high Peclet number mass transfer across the center plane of this geometry is presented as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

Constant of integration

C :

Dimensionless concentration

c A :

Concentration of solute A, gm-moles/cm3

c 1 :

Concentration at upper plate

c 2 :

Concentration at lower plate

c 0 :

Concentration at center plane

d :

Dimensionless pressure gradient perturbation function

d 1,d 2, ...:

Coefficients in expansion ofd

D p :

Dimensionless pressure gradient

D 0,D 1, ...:

Coefficients in expansion ofD p

D AB :

Diffusivity, cm2/sec

f :

Dimensionless velocity gradient,θ′

g :

Dimensionless velocity profile perturbation function

g :

Inner representation ofg

g :

Outer representation ofg

g 1,g 2, ...:

Coefficients in expansion ofg

g 1,g 2, ...:

Coefficients in expansion ofg

L :

Half-width between plates, cm

Nu AB :

Nusselt number for mass transfer

p :

pressure, gm/cm-sec2

P :

Head, defined as (p + ρgz), gm/cm sec2

Q :

Volumetric flow rate, cm3/sec

r :

Radial position coordinate, cm

Re :

Reynolds number, defined asLV ρ/μ

Sc :

Schmidt number

V :

Injection velocity, cm/sec

v r :

Radial velocity component, cm/sec

v z :

Axial velocity component, cm/sec

Y :

Stretched dimensionless axial position in inner region

z :

Axial position coordinate, cm

ɛ :

Perturbation parameter, 1/Re

φ :

z-dependent factor inv r , sec−1

μ :

Viscosity, gm/cm sec

ρ :

Density, gm/cm3

θ :

Dimensionless axial velocity,v z /V

θ 0,θ 1, ...:

Coefficients in smallRe expansion ofθ

ζ :

Dimensionless axial position,z/L

References

  1. Lamb, H., Hydrodynamics, Dover, N.Y., 1945.

  2. Schlichting, H., Boundary Layer Theory, 6th ed., McGraw-Hill, N.Y., 1968.

    Google Scholar 

  3. Rosenhead, L., Ed., Laminar Boundary Layers, Oxford Univ. Press, 1963; Chapter III, Part II.

  4. Karman, Th. v., Z. A. M. M.1 (1921) 233.

    Google Scholar 

  5. Levich, V. G., Physicochemical Hydrodynamics, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962; p. 60.

    Google Scholar 

  6. Newman, John, Electrochemical Systems, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973; pp. 280, 307, 397.

    Google Scholar 

  7. Beavers, G. S., E. M. Sparrow andB. A. Masha, AIChE J.20 (1974) 596.

    Article  Google Scholar 

  8. Bird, R. B., W. E. Stewart andE. N. Lightfoot, Transport Phenomena, John Wiley & Sons, Inc., N. Y., 1960; Ch. 3.

    Google Scholar 

  9. Newman, John, Ind. Eng. Chem. Fund.7 (1968) 514.

    Article  Google Scholar 

  10. Van Dyke, M., Perturbation Methods in Fluid Mechanics, Academic Press, N. Y., 1964.

    Google Scholar 

  11. Acrivos, A., Chem. Eng. Education2 (1968) 62.

    Google Scholar 

  12. Terrill, R. M. andJ. P. Cornish, J. Appl. Math. Phys. (ZAMP)24 (1973) 676.

    Article  Google Scholar 

  13. Landau, L. D. andE. M. Lifshitz, Fluid Mechanics, Pergamon Press, London, 1959; p. 27.

    Google Scholar 

  14. Bauer, G. L., Solvent Extraction of Copper: Kinetic and Equilibrium Studies, Ph. D. Thesis, Univ. of Wisconsin, 1974.

  15. Chan, W. C. andL. E. Scriven, Ind. Eng. Chem. Fund.9 (1970) 114.

    Article  Google Scholar 

  16. Stewart, W. E., J. B. Angelo andE. N. Lightfoot, AIChE J.16 (1970) 771.

    Article  Google Scholar 

  17. Bird, R. B., W. E. Stewart, E. N. Lightfoot, Transport Phenomena, John Wiley and Sons, Inc., N. Y., 1960; Ch. 18.

    Google Scholar 

  18. Angelo, J. B., E. N. Lightfoot andD. W. Howard, AIChE J.12 (1966) 751.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, T.W., Bauer, G.L. Stagnation-point viscous flow of an incompressible fluid between porous plates with uniform blowing. Appl. Sci. Res. 31, 223–239 (1975). https://doi.org/10.1007/BF02116160

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02116160

Keywords

Navigation