Skip to main content
Log in

Calcium binding to the subunit c ofE. coli ATP-synthase and possible functional implications in energy coupling

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The 8-kDa subunit c of theE. coli F0 ATP-synthase proton channel was tested for Ca++ binding activity using a45Ca++ ligand blot assay after transferring the protein from SDS-PAGE gels onto polyvinyl difluoride membranes. The purified subunit c binds45Ca++ strongly with Ca++ binding properties very similar to those of the 8-kDa CF0 subunit III of choloroplast thylakoid membranes. The N-terminal f-Met carbonyl group seems necessary for Ca++ binding capacity, shown by loss of Ca++ binding following removal of the formyl group by mild acid treatment. The dicyclohexylcarbodiimide-reactive Asp-61 is not involved in the Ca++ binding, shown by Ca++ binding being retained in twoE. coli mutants, Asp61→Asn and Asp61→Gly. The Ca++ binding is pH dependent in both theE. coli and thylakoid 8-kDa proteins, being absent at pH 5.0 and rising to a maximum near pH 9.0. A treatment predicted to increase the Ca++ binding affinity to its F0 binding site (chlorpromazine photoaffinity attachment) caused an inhibition of ATP formation driven by a base-to-acid pH jump in whole cells. Inhibition was not observed when the Ca++ chelator EGTA was present with the cells during the chlorpromazine photoaffinity treatment. An apparent Ca++ binding constant on the site responsible for the UV plus chlorpromazine effect of near 80–100 nM was obtained using an EGTA-Ca++ buffer system to control free Ca++ concentration during the UV plus chlorpromazine treatment. The data are consistent with the notion that Ca++ bound to the periplasimic side of theE. coli F0 proton channel can block H+ entry into the channel. A similar effect occurs in thylakoid membranes, but the Ca++ binding site is on the lumen side of the thylakoid, where Ca++ binding can modulate acid-base jump ATP formation. The Ca++ binding to the F0 and CF0 complexes is consistent with a pH-dependent gating mechanism for control of H+ ion flux across the opening of the H+ channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altendorf, K., Schmid, R., Decker, C., and Wachter, E. (1980).Hoppe-Seyler's Z. Physiol. Chem. 361, 1474.

    Google Scholar 

  • Bers, D. M., Patton, C. W., and Nuccitelli, R. (1994). InMethods in Cell Biology (Nuccitelli, R., ed.). Academic Press, New York, Vol. 40, pp. 1–29.

    Google Scholar 

  • Charuk, J. H. M., Pirraglia, C. A., and Reithmeyer, A. F. (1990).Anal. Biochem. 188, 123–131.

    PubMed  Google Scholar 

  • Chazotte, B., Vanderkooi, G., and Chignell, D. (1982).Biochim. Biophys. Acta 680, 310–316.

    PubMed  Google Scholar 

  • Chiang, G. G., and Dilley, R. A. (1987).Biochemistry 26, 4911–4916.

    Google Scholar 

  • Chiang, G. G., Wooten, D. C., and Dilley, R. A. (1992).Biochemistry 31, 5808–5819.

    PubMed  Google Scholar 

  • Dilley, R. A. (1991).Curr. Top. Bioenerg. 16, 265–318.

    Google Scholar 

  • Demmig, B., Winter, K., Krüger, A., and Czygan, F-C. (1987).Plant Physiol. 84, 218–224.

    Google Scholar 

  • Demmig-Adams, B. (1990).Biochim. Biophys. Acta 1020, 1–24

    Google Scholar 

  • Ferguson, S. J. (1985).Biochim. Biophys. Acta 811, 47–95.

    Google Scholar 

  • Fillingame, R. H., Peters, L. K., White, L. F., Mosher, M. E., and Paule, C. R. (1984)J. Bacteriol. 158, 1078–1083.

    PubMed  Google Scholar 

  • Gilmore, A. M., and Yamamoto, H. Y. (1991).Plant Physiol. 96, 635–643.

    Google Scholar 

  • Girvin, M. E., and Fillingame, R. N. (1993).Biochemistry 32, 12167–12177.

    PubMed  Google Scholar 

  • Good, N. E., Izawa, S., and Hind, G. (1966).Curr. Top. Bioenerg. 1, 75–112.

    Google Scholar 

  • Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985).J. Biol. Chem. 260, 3440–3450.

    PubMed  Google Scholar 

  • Hochman, Y., and Carmeli, C. (1981).Biochemistry 20, 6287–6292.

    PubMed  Google Scholar 

  • Ikeuchi, M., Hirano, A., Hiyama, T., and Inoue, Y. (1990).FEBS Lett. 263, 274–278.

    PubMed  Google Scholar 

  • Jagendorf, A. T., and Uribe, E. (1966).Proc. Nat. Acad. Sci. USA 55, 170–177.

    PubMed  Google Scholar 

  • Junesch, U., and Gräber, P. (1987).Biochim. Biophys. Acta 893, 275–288.

    Google Scholar 

  • Krulwich, T. A. (1995).Mol. Microbiol. 15, 403–410.

    PubMed  Google Scholar 

  • Lötscher, H. R., de Jong, C., and Capaldi, R. A. (1984).Biochemistry 23, 4128–4134.

    PubMed  Google Scholar 

  • Maloney, P. C., Kashket, E. R., and Wilson, T. H. (1974).Proc. Nat. Acad. Sci. USA 71, 3896–4001.

    PubMed  Google Scholar 

  • Maruyama, K., and Nomura, Y. (1984).J. Biochem. (Tokyo) 96, 859–870.

    Google Scholar 

  • Massom, L., Lee, H., and Jarrett, H. W. (1990).Biochemistry 29, 671–681

    PubMed  Google Scholar 

  • McPhelan, C. A., Strynadka, N. C. J., and James, M. N. G. (1991).Adv. Protein Chem. 42, 77–144.

    PubMed  Google Scholar 

  • Miller, M. J., Fraga, D., Paule, C. R., and Fillingame, R. H. (1989).J. Biol. Chem. 264, 305–311.

    PubMed  Google Scholar 

  • Moody, M. F., Jones, P. T., Carver, J. A., Boyd, J., and Campbell, I. D. (1987).J. Mol. Biol. 193, 759–774.

    PubMed  Google Scholar 

  • Murata, N., Miyao, M., Hayashida, N., Hidaka, T., and Sugiura, M. (1988).FEBS Lett. 235, 283–288.

    Google Scholar 

  • Neuburger, M., Journet, E. P., Bligny, R., Carde, J. P., and Douce, R. (1982).Arch. Biochem. Biophys. 217, 312–323.

    PubMed  Google Scholar 

  • Noctor, G., Rees, D., Young, A., and Horton, P. (1991).Biochim. Biophys. Acta 1057, 320–336.

    Google Scholar 

  • Owens, T. G. (1994). InPhotoinhibition of Photosynthesis (Baker, N. R., and Bowyer, J. R., eds.), BIOS Sci. Publ, Butterworth-Heinemann, Oxford, pp. 95–109.

    Google Scholar 

  • Pfündel, E., Renganathan, M., Gilmore, A., Yamamoto, H. Y., and Dilley, R. A. (1994).Plant Physiol. 106, 1647–1658.

    PubMed  Google Scholar 

  • Prozialeck, W. C., Cimino, M., and Weiss, B. (1981).Mol. Pharmacol. 19, 264–269.

    PubMed  Google Scholar 

  • Renganathan, M., Pfündel, E., and Dilley, R. A. (1993).Biochim. Biophys. Acta 1142, 277–292.

    Google Scholar 

  • Roberts, D. M., Lukas, T. J., and Watterson, D. M. (1986).CRC Rev. Plant Sci. 4, 311–339.

    Google Scholar 

  • Schägger, H., and von Jagow, G. (1987).Anal. Biochem. 166, 368–379.

    PubMed  Google Scholar 

  • Sebald, W., and Hoppe, J. (1981).Curr. Top. Bioenerg. 12, 1–64.

    Google Scholar 

  • Strynadka, N. C. J., and James, M. N. G. (1989).Annu. Rev. Biochem. 58, 951–998.

    PubMed  Google Scholar 

  • Surek, B., Kreimer, G., Melkonian, M., and Latzko, E. (1987).Planta 171, 565–568.

    Google Scholar 

  • Terwilliger, T. C., and Clarke, S. (1981).J. Biol. Chem. 256, 3067–3076.

    PubMed  Google Scholar 

  • Wachter, E., Schmid, R., Decker, C., and Altendorf, K. (1980).First European Bioenergetics Conference (E. Patron, ed.), Bologna, Italy, pp. 173–174.

  • Wooten, D. C., and Dilley, R. A. (1993).J. Bioenerg. Biomembr. 25, 557–567.

    PubMed  Google Scholar 

  • Zakharov, S. D., and Kuzmina, V. P. (1992).Biochemistry (Moscow) 57, 534–542

    Google Scholar 

  • Zakharov, S. D., Ewy, R. G., and Dilley, R. A. (1993).FEBS Lett. 336, 95–99.

    PubMed  Google Scholar 

  • Zakharov, S. D., Ewy, R. G., and Dilley, R. A. (1995).Protoplasma 185, 42–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by grants from the Department of Energy and the U.S. Department of Agriculture.

On leave from the Institute of Soil Science and Photosynthesis, Russian Academy of Science, Pushchino, Russia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, S.D., Li, X., Red'ko, T.P. et al. Calcium binding to the subunit c ofE. coli ATP-synthase and possible functional implications in energy coupling. J Bioenerg Biomembr 28, 483–494 (1996). https://doi.org/10.1007/BF02110438

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110438

Key words

Navigation