Skip to main content
Log in

An explicit description of the fundamental unitary for SU(2) q

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a concrete description of an isometryv from ℓ2(ℕ×ℤ×ℤ×ℤ) to ℓ2(ℕ×ℤ×ℕ×ℤ) whose existence has recently been discovered by Woronowicz [11]. The isometryv gives the comultiplication δ on the C*-algebraA of the quantum group SU(2) q through the formula δ(x)=v(x⊗1)v * (x∈A), where 1 is the identity operator on ℓ2(ℤ×ℤ). The matrix entries ofv are described in terms of littleq-Jacobi polynomials. Usingv, we give a concrete description of a unitary operatorV onH η ⊗H η such that (πη⊗πη)δ(x)=Vη(x⊗1)V *, whereH η=ℓ2(ℕ×ℤ×ℕ) and πη:AL(H η) is the GNS representation associated with the Haar state η onA. The operatorV satisfies the pentagonal identity of Baaj and Skandalis [1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baaj, S., Skandalis, G.: Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres. Ann. Sci. Ecole Norm. Sup., (4)26, 425–488 (1993)

    Google Scholar 

  2. Coburn, L.A.: The C*-algebra generated by an isometry. Bull. Am. Math. Soc.73, 722–726 (1967)

    Google Scholar 

  3. Gasper, G., Rahman, M.: Basic hypergeometric series. Encyclopedia of Mathematics and Its Applications, vol.35, Cambridge: Cambridge University Press, 1990

    Google Scholar 

  4. Koornwinder, T.H.: Representations of the twisted SU(2) quantum group and someq-hypergeometric orthogonal polynomials. Proc. Kon. Nederl. Akad. Wetensch. Ser. A92, 97–117 (1989)

    Google Scholar 

  5. Landstad, M.B.: Duality theory for covariant systems. Trans. Am. Math. Soc.248, 223–267 (1979)

    Google Scholar 

  6. Masuda, T., Mimachi, K., Nakagami, Y., Noumi, M., Ueno, K.: Representations of the quantum group SU q (2) and the littleq-Jacobi polynomials. J. Funct. Anal.99, 357–386 (1991)

    Article  Google Scholar 

  7. Podleś, P., Woronowicz, S.L.: Quantum deformation of Lorentz group. Commun. Math. Phys.130, 381–431 (1990)

    Google Scholar 

  8. Vaksman, L.L., Soibelman, Ya. S.: Algebra of functions on the quantum group SU(2). Funkt. Anal. i Pril.22, no. 3, 1–14 (1988) (=Funct. Anal. Appl.22, 170–181 (1988))

    Google Scholar 

  9. Woronowicz, S.L.: Twisted SU(2) group. An example of a non-commutative differential calculus. Publ. RIMS, Kyoto23, 117–181 (1987)

    Google Scholar 

  10. Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys.111, 613–665 (1987)

    Article  Google Scholar 

  11. Woronowicz, S.L.: Quantum SU(2) and E(2) groups. Contraction procedure. Commun. Math. Phys.149, 637–652 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Araki

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lance, E.C. An explicit description of the fundamental unitary for SU(2) q . Commun.Math. Phys. 164, 1–15 (1994). https://doi.org/10.1007/BF02108804

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02108804

Keywords

Navigation