Skip to main content
Log in

Quantization of closed mini-superspace models as bound states

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Wheeler-DeWitt equation is applied to closedk>0 Friedmann-Robertson-Walker metric with various combination of cosmological constant and matter (e.g., radiation or pressureless gas). It is shown that if the universe ends in the matter dominated era (e.g., radiation or pressureless gas) with zero cosmological constant, then the resulting Wheeler-DeWitt equation describes a bound state problem. As solutions of a nondegenerate bound state system, the eigen-wave functions are real (Hartle-Hawking). Furthermore, as a bound state problem, there exists a quantization condition that relates the curvature of the three space with the various energy densities of the universe. If we assume that our universe is closed, then the quantum number of our universe isN∼(Gk)−1∼10122. The largeness of this quantum number is naturally explained by an early inflationary phase which resulted in a flat universe we observe today. It is also shown that if there is a cosmological constant Λ>0 in our universe that persists for all time, then the resulting Wheeler-DeWitt equation describes a non-bound state system, regardless of the magnitude of the cosmological constant. As a consequence, the wave functions are in general complex (Vilenkin).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dirac, P. A. M. (1964).Lectures on Quantum Mechanics (Belfer Graduate School of Science Monographs 2, Yeshiva University, New York).

    Google Scholar 

  2. Wald, R. M. (1984).General Relativity (University of Chicago Press, Chicago).

    Google Scholar 

  3. Arnowitt, R., Deser, S., and Misner, C. W. (1963). InGravitation: An Introduction to Current Research (Wiley, New York).

    Google Scholar 

  4. DeWitt, B. S. (1967).Phys. Rev. 160, 1113.

    Article  Google Scholar 

  5. Wheeler, J. A. (1968). InBattelle Rencontres: 1967 Lectures in Mathematics and Physics, C. M. DeWitt and J. A. Wheeler, eds. (Benjamin, New York).

    Google Scholar 

  6. Misner, C. W. (1972). InMagic Without Magic: John Archibald Wheeler Festschrift, J. R. Klauder, ed. (Freeman, San Francisco).

    Google Scholar 

  7. Halliwell, J. J. (1988).Phys. Rev. D 38, 2468.

    Google Scholar 

  8. Misner, C. W. (1970). InRelativity, M. Carmeli, S. I. Fickler, and L. Witten, eds. (Plenum, New York).

    Google Scholar 

  9. Hawking, S. W., and Page, D. N. (1986).Nucl. Phys. B 264, 185.

    Google Scholar 

  10. Blyth, W. F., and Isham, C. J. (1975).Phys. Rev. D 11, 768.

    Google Scholar 

  11. Christodoulakis, T., and Zanelli, J. (1984).Phys. Lett. 102A, 227.

    Google Scholar 

  12. Esposito, G., and Platania, G. (1988).Class. Quant. Grav. 5, 937.

    Google Scholar 

  13. Gibbons, G. W., and Grishchuk, L. P. (1988).Nucl. Phys. B 313, 736.

    Article  Google Scholar 

  14. Hartle, J. B., and Hawking, S. W. (1983).Phys. Rev. D 28, 2960.

    Google Scholar 

  15. Hawking, S. W. (1984).Nucl. Phys. B 239, 257.

    Article  Google Scholar 

  16. Vilenkin, A. (1986).Phys. Rev. D 33, 3560.

    Google Scholar 

  17. Vilenkin, A. (1986).Phys. Rev. D 37, 888.

    Google Scholar 

  18. Narlikar, J., Padmanabhan, T. (1986).Gravity, Gauge Theories and Quantum Cosmology (Reidel, Dordrecht).

    Google Scholar 

  19. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation (W. H. Freeman, San Francisco).

    Google Scholar 

  20. Ringwood, G. A. (1976).J. Phys. A: Math. Gen. 9, 1253.

    Google Scholar 

  21. Cheng, K. S. (1972).J. Math. Phys. 13, 1723.

    Google Scholar 

  22. Peleg, Y. (199?). Preprint, Brandeis University, BRX-TX-342.

  23. Arfken, G. (1970).Mathematical Methods for Physicists (Academic, New York).

    Google Scholar 

  24. Gradshteyn, I. S., and Ryzhik, I. M. (1965).Table of Integral, Series, and Products (Academic, New York).

    Google Scholar 

  25. Merzbacher, E. (1970).Quantum Mechanics (Wiley, New York).

    Google Scholar 

  26. Guth, A. (1981).Phys. Rev. D 23, 347.

    Google Scholar 

  27. Kolb, E. W., and Turner, M. S. (1990).The Early Universe (Addison-Wesley, New York).

    Google Scholar 

  28. Linde, A. D. (1984).Sov. Phys. JETP 60, 211.

    Google Scholar 

  29. Vilenkin, A. (1984).Phys. Rev. D 30, 549.

    Google Scholar 

  30. Rubakov, V. A. (1984).Phys. Lett. 148B, 280.

    Google Scholar 

  31. Zel'dovich, Ya. B., and Starobinskii, A. A. (1984).Sov. Astron. Lett. 10, 135.

    Google Scholar 

  32. Albrecht, A., and Brandenberger, R. (1985).Phys. Rev. D 31, 1225.

    Google Scholar 

  33. Kung, J. H., and Brandenberger, R. (1989).Phys. Rev. D 40, 2532.

    Google Scholar 

  34. Kasner, E. (1921).Am. J. Math. 43, 217.

    Google Scholar 

  35. Schücking, E., and Heckmann, O. (1958). InOnzieme Conseil de Physique Solvay (Editions Stoops, Brussels).

    Google Scholar 

  36. Misner, C. W. (1969).Phys. Rev. Lett. 22, 1071.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kung, J.H. Quantization of closed mini-superspace models as bound states. Gen Relat Gravit 27, 35–53 (1995). https://doi.org/10.1007/BF02105672

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02105672

Keywords

Navigation