Skip to main content
Log in

The complete amino acid sequences of cytosolic and mitochondrial aspartate aminotransferases from horse heart, and inferences on evolution of the isoenzymes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

We report here the complete amino acid sequences of the cytosolic and mitochondrial aspartate aminotransferases from horse heart. The two sequences can be aligned so that 48.1% of the amino acid residues are identical. The sequences have been compared with those of the cytosolic isoenzymes from pig and chicken, the mitochondrial isoenzymes from pig, chicken, rat, and human, and the enzyme fromEscherichia coli. The results suggest that the mammalian cytosolic and mitochondrial isoenzymes have evolved at equal and constant rates whereas the isoenzymes from chicken may have evolved somewhat more slowly. Based on the rate of evolution of the mammalian isoenzymes, the geneduplication event that gave rise to cytosolic and mitochondrial aspartate aminotransferases is estimated to have occurred at least 109 years ago. The cytosolic and mitochondrial isoenzymes are equally related to the enzyme fromE. coli; the prokaryotic and eukaryotic enzymes diverged from one another at least 1.3×109 years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barra D, Bossa F, Doonan S, Fahmy HMA, Martini F, Hughes GJ (1976) Large scale purification and some properties of the mitochondrial aspartate aminotransferase from pig heart. Eur J Biochem 64:519–526

    PubMed  Google Scholar 

  • Barra D, Bossa F, Doonan S, Fahmy HMA, Hughes GJ, Martini F, Petruzzelli R, Wittman-Liebold B (1980) The cytosolic and mitochondrial aspartate aminotransferases from pig heart: a comparison of their primary structures predicted secondary structures and some physical properties. Eur J Biochem 108:405–414

    PubMed  Google Scholar 

  • Barra D, Schininà ME, Simmaco M, Bannister JV, Bannister WH, Rotilio G, Bossa F (1984) The primary structure of human liver manganese superoxide dismutase. J Biol Chem 259:12595–12601

    PubMed  Google Scholar 

  • Bossa F, Barra D, Martini F, Schininà ME, Doonan S, O'Donovan KMC (1981) Interspecies comparisons of aspartate aminotransferases based on terminal and active site sequences. Comp Biochem Physiol [B] 69:753–760

    Google Scholar 

  • Dayhoff M (ed) (1978) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Silver Spring, Maryland

    Google Scholar 

  • Dobzhansky T, Ayala FJ, Stebbins GL, Valentine JW (1977) Evolution. WH Freeman, San Francisco

    Google Scholar 

  • Doonan S, Doonan HJ, Hanford R, Vernon CA, Walker JM, Airoldi LP da S, Bossa F, Barra D, Carloni M, Fasella P, Riva F (1975) The primary structure of aspartate aminotransferase from pig heart muscle. Biochem J 149:497–506

    PubMed  Google Scholar 

  • Doonan S, Marra E, Passarella S, Saccone C, Quagliariello E (1984a) Transport of proteins into mitochondria. Int Rev Cytol 91:141–186

    PubMed  Google Scholar 

  • Doonan S, Barra D, Bossa F (1984b) Structural and genetic relationships between cytosolic and mitochondrial isoenzymes. Int J Biochem 16:1193–1199

    PubMed  Google Scholar 

  • Goodman M (1985) Rates of molecular evolution: the hominid slowdown. BioEssays 3:9–14

    PubMed  Google Scholar 

  • Graff-Hausner U, Wilson KJ, Christen P (1983) The covalent structure of mitochondrial aspartate aminotransferase from chicken: identification of segments of the polypeptide chain invariant specifically in the mitochondrial isoenzyme. J Biol Chem 258:8813–8826

    PubMed  Google Scholar 

  • Huynh QK, Sakakibara R, Watanabe T, Wada H (1980) Primary structure of mitochondrial glutamic oxaloacetic transaminase from rat liver: comparison with that of the pig heart isozyme. Biochem Biophys Res Commun 97:474–479

    PubMed  Google Scholar 

  • Joh T, Nomiyama H, Maeda S, Shimada K, Morino Y (1985) Cloning and sequence analysis of a cDNA encoding porcine mitochondrial aspartate aminotransferase precursor. Proc Natl Acad Sci USA 82:6065–6069

    PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Kondo K, Wakabayashi S, Yagi T, Kagamiyama H (1984) The complete amino acid sequence of aspartate aminotransferase fromEscherichia coli: sequence comparisons with pig isoenzymes. Biochem Biophys Res Commun 122:62–67

    PubMed  Google Scholar 

  • Lee YM, Friedman DJ, Ayala FJ (1985) Complete amino acid sequence of copper-zinc superoxide dismutase fromDrosophila melanogaster. Arch Biochem Biophys 241:577–589

    PubMed  Google Scholar 

  • Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227:1435–1441

    PubMed  Google Scholar 

  • Martini F, Angelaccio S, Barra D, Doonan S, Bossa F (1983) Primary structure of aspartate aminotransferase from horse heart and comparison with that of other homotopic and heterotopic isoenzymes. Comp Biochem Physiol [B] 76:483–487

    Google Scholar 

  • Martini F, Angelaccio S, Barra D, Doonan S, Bossa F (1984) Partial amino acid sequence and cysteine reactivities of cytosolic aspartate aminotransferase from horse heart. Biochim Biophys Acta 789:51–56

    PubMed  Google Scholar 

  • Martini F, Angelaccio S, Barra D, Pascarella S, Maras B, Doonan S, Bossa F (1985) The primary structure of mitochondrial aspartate aminotransferase from human heart. Biochim Biophys Acta 832:46–51

    PubMed  Google Scholar 

  • O'Donovan KMC, Doonan S, Marra E, Passarella S, Quagliariello E (1985) Removal of an N-terminal peptide from mitochondrial aspartate aminotransferase abolishes its interactions with mitochondria in vitro. Biochem J 228:609–614

    PubMed  Google Scholar 

  • Porter PB, Doonan S, Pearce FL (1981a) Interspecies comparisons of aspartate aminotransferases based on immunochemical methods. Comp Biochem Physiol [B] 69:761–767

    Google Scholar 

  • Porter PB, Barra D, Bossa F, Cantalupo G, Doonan S, Martini F, Sheehan D, Wilkinson SM (1981b) Purification and basic properties of the aspartate aminotransferases from a variety of sources. Comp Biochem Physiol [B] 69:737–746

    Google Scholar 

  • Shlyapnikov SV, Myasnikov AN, Severin ES, Myagkova MA, Torchinsky YuM, Braunstein AE (1979) Primary structure of cytoplasmic aspartate aminotransferase from chicken heart and its homology with pig heart isoenzymes. FEBS Lett 106:385–388

    PubMed  Google Scholar 

  • Simmaco M, Barra D, Bossa F (1985) Separation of phenylthiohydantoin-amino acids by high-performance liquid chromatography and some applications in dansyl Edman sequence analysis. J Chromatogr 349:99–103

    Google Scholar 

  • Sonderegger P, Christen P (1978) Comparison of the evolution rates of cytosolic and mitochondrial aspartate aminotransferases. Nature 275:157–159

    PubMed  Google Scholar 

  • Sonderegger P, Gehring H, Christen P (1977) Interspecies comparison of cytosolic and mitochondrial aspartate aminotransferase: evidence for a more conservative evolution of the mitochondrial isoenzyme. J Biol Chem 252:609–612

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doonan, S., Martini, F., Angelaccio, S. et al. The complete amino acid sequences of cytosolic and mitochondrial aspartate aminotransferases from horse heart, and inferences on evolution of the isoenzymes. J Mol Evol 23, 328–335 (1986). https://doi.org/10.1007/BF02100642

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02100642

Key words

Navigation