Skip to main content
Log in

Trace-element speciation and partitioning in environmental geochemistry and health

  • Published:
Minerals and the Environment Aims and scope Submit manuscript

Abstract

Establishment of the chemical form and associations of trace elements is important in the scientific and medical fields related to environmental geochemistry and health. Fundamental understanding of trace-element behaviour, the realistic formulation of historical perspectives of trace-element contamination, an assessment of environmental transformation processes and a thorough appraisal of environment-related ill health and disease all depend on knowledge of the chemical speciation and partitioning of trace elements. These topics and the development of analytical speciation techniques and procedures are discussed with reference to trace-element studies in the Department of Forensic Medicine and Science, University of Glasgow, on lacustrine sediments and water, the atmosphere, soil and street dirt of an urban environment and human biological fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Underwood, E. J., ‘Trace elements and health: an overview’,Phil. Trans. R. Soc. Lond., B288, 1979, 5–14.

    Google Scholar 

  2. Moynahan, E. J., ‘Trace elements in man’,ibid., 65–79.

    Google Scholar 

  3. Shaper, A. G., ‘Epidemiology for geochemists’,ibid., 127–36.

    Google Scholar 

  4. Thornton, I., and Webb, J. S., ‘Geochemistry and health in the United Kingdom’,ibid., 151–68.

    Google Scholar 

  5. Masironi, R., ‘Geochemistry and cardiovascular diseases’,ibid., 193–203.

    Google Scholar 

  6. Anderson, R. J., and Davies, B. E., ‘Dental caries prevalence and trace elements in soil with special reference to lead’,J. Geol. Soc., 137, 1980, 547–58.

    Google Scholar 

  7. Thornton, I., and Plant, J., ‘Regional geochemical mapping and health in the United Kingdom’,ibid., 575–86.

    Google Scholar 

  8. Cantillo, A. Y., and Segar, D. A., ‘Metal species identification in the environment — a major challenge for the analyst’,Proc. First Intern. Conf. Heavy Metals Environ., Toronto, 1975, Vol. 1, 183–204.

    Google Scholar 

  9. Hamilton, E. I.,The Chemical Elements and Man, Springfield, USA: Charles C. Thomas, 1979, 528 pp.

    Google Scholar 

  10. Underwood, E. J., ‘Concluding remarks’,Phil. Trans. R. Soc. Lond., B288, 1979, 215–6.

    Google Scholar 

  11. Bowen, H. J. M., ‘The requirements of medicine for trace element analysis in the 21st century’,in BrÄtter, P., and Schramel, P. (Editors),Trace Element Analytical Chemistry in Medicine and Biology. W. de Gruyter, Berlin, 1980, 783–800.

    Google Scholar 

  12. Harrison, R. M., and Laxen, D. P. H., ‘Metals in the environment 1: chemistry’,Chem. Brit., 16, 1980, 316–20.

    Google Scholar 

  13. Salomons, W., and Förstner, U., ‘Trace metal analysis in polluted sediments Part II: Evaluation of environmental impact’,Environ. Technol. Lett., 1, 1980, 506–17.

    Google Scholar 

  14. Mertz, W., ‘The essential trace elements’,Science, 213, 1981, 1332–8.

    Google Scholar 

  15. West, T. S., ‘Soil as the source of trace elements’,Phil. Trans. R. Soc. Lond., B294, 1981, 19–39.

    Google Scholar 

  16. Delves, H. T., ‘Some clinical aspects of trace elements’,Ann. Clin. Biochem., 19, 1982, 302–6.

    Google Scholar 

  17. Sadler, P. J., ‘Inorganic pharmacology’,Chem. Brit., 18, 182–8.

  18. Wood, J. M., ‘Biological cycles for elements in the environment’,Die Naturwissenschaften, 62, 1975, 357–64.

    Google Scholar 

  19. Goldwater, L. J., and Stopford, W., ‘Mercury’,in Lenihan, J., and Fletcher, W. W. (Editors),Environment and Man. Blackie and Son, Glasgow, 1977, Vol. 6, 38–63.

    Google Scholar 

  20. Inverson, W. P., and Brinckman, F. E., ‘Microbial metabolism of heavy metals’,Water Pollut. Microbiol., 2, 1978, 201–32.

    Google Scholar 

  21. Wood, J. M., Fanchiang, Y. -T., and Ridley, W. P., ‘The biochemistry of toxic elements’,Quart. Rev. Biophys., 11, 1978, 467–9.

    Google Scholar 

  22. Patterson, C. C., ‘Contaminated and natural lead environments of man’,Arch. Environ. Hlth., 11, 1965, 344–59.

    Google Scholar 

  23. Bowen, H. J. M., ‘Natural cycles of the elements and their perturbation by man’,in Lenihan, J., and Fletcher, W.W. (Editors),Environment and Man, Blackie and Son, Glasgow, 1977, Vol. 6, 1–37.

    Google Scholar 

  24. Nriagu, J. O., ‘Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere’,Nature, 279, 1979, 409–11.

    Google Scholar 

  25. Murozumi, M., Chow, T. J., and Patterson, C. C., ‘Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata’,Geochim. Cosmochim. Acta., 33, 1969, 1247–94.

    Google Scholar 

  26. Boutron, C., ‘Respective influence of global pollution and volcanic eruptions on the past variations of the trace metals content of Antarctic snows since 1880's’,J. Geophys. Res., 85, 1980, 7426–32.

    Google Scholar 

  27. Ng, A., and Patterson, C. C., ‘Natural concentrations of lead in ancient Arctic and Antarctic ice’,Geochim. Cosmochim. Acta, 45, 1981, 2109–21.

    Google Scholar 

  28. Bruland, K. W., Bertine, K., Koide, M., and Goldberg, E. D., ‘History of metal pollution in Southern California coastal zone’,Environ. Sci. Technol, 8, 1974, 425–32.

    Google Scholar 

  29. Goldberg, E. D., Gamble, E., Griffin, J. J., and Koide, M., ‘Pollution history of Narragansett Bay as recorded in its sediments’,Est. Coast. Mar. Sci., 5, 1977, 549–61.

    Google Scholar 

  30. Schell, W. R., and Nevissi, A., ‘Heavy metals from waste disposal in Puget Sound’,Environ. Sci. Technol., 11, 1977, 887–93.

    Google Scholar 

  31. Förstner, U., ‘Lake sediments as indicators of heavy-metal pollution’,Die Naturwissenschaften, 63, 1976, 465–70.

    Google Scholar 

  32. Nriagu, J. O., Kemp, A. L. W., Wong, H. K. T., and Harper, N., ‘Sedimentary record of heavy metal pollution in Lake Erie’,Geochim. Cosmochim. Acta, 43, 1979, 247–58.

    Google Scholar 

  33. Rippey, B., Murphy, R. J., and Kyle, S. W., ‘Anthropogenically derived changes in the sedimentary flux of Mg, Cr, Ni, Cu, Zn, Hg, Pb and P in Lough Neagh, Northern Ireland’,Environ. Sci. Technol., 16, 1982, 16–30.

    Google Scholar 

  34. Robbins, J. A., ‘Geochemical and geophysical applications of radioactive lead’,in Nriagu, J. O. (Editor),The Biogeochemistry of Lead in the Environment, Elsevier/North Holland Biomedical Press, Amsterdam, 1978, Part A, 285–393.

    Google Scholar 

  35. Skei, J., and Paus, P. E., ‘Surface metal enrichment and partitioning of metals in a dated sediment core from a Norwegian fjord’,Geochim. Cosmochim. Acta, 43, 1979, 239–46.

    Google Scholar 

  36. Müller, G., ‘Heavy metals and other pollutants in the environment: a chronology based on the analysis of dated sediments’,Proc. Third Intern. Conf. Heavy Metals Environ., Amsterdam, 1981, 12–17.

  37. Farmer, J. G., Swan, D. S., and Baxter, M. S., ‘Records and sources of metal pollutants in a dated Loch Lomond sediment core’,Sci. Total Environ., 16, 1980, 131–47.

    Google Scholar 

  38. Baxter, M. S., Crawford, R. W., Swan, D. S., and Farmer, J. G., ‘210Pb dating of a Loch Lomond sediment core by conventional and particle track methods and some geochemical observations’,Earth Planet Sci. Lett., 53, 1981, 434–44.

    Google Scholar 

  39. Farmer, J. G., ‘Metal pollution in marine sediment cores from the west coast of Scotland’,Mar. Environ. Res., 8, 1983, 1–28.

    Google Scholar 

  40. Baxter, M. S., Farmer, J. G., McKinley, I. G., Swan, D. S., and Jack, W., ‘Evidence of the unsuitability of gravity coring for collecting sediment in pollution and sedimentation rate studies’,Environ. Sci. Technol., 15, 1981, 843–6.

    Google Scholar 

  41. Benninger, L. K., Aller, R. C., Cochran, J. K., and Turekian, K. K., ‘Effects of biological sediment mixing on the210Pb chronology and trace metal distribution in a Long Island Sound sediment core’,Earth Planet Sci. Lett., 43, 1979, 241–59.

    Google Scholar 

  42. Krishnaswami, S., Benninger, L. K., Aller, R. C., and Von Damm, K. L., ‘Atmospherically derived radionuclides as tracers of sediment mixing and accumulation in near-shore marine and lake sediments. Evidence from78Be,210Pb and239,240pu’,ibid., 47, 1980, 307–18.

    Google Scholar 

  43. Santschi, P. H., ‘A revised estimate for trace metal fluxes to Narragansett Bay: a comment’,Est. Coast Mar. Sci., 11, 1980, 115–18.

    Google Scholar 

  44. Carpenter, R., Peterson, M. L., and Bennett, J. T., ‘210Pb-derived sediment accumulation and mixing rates for the Washington continental slope’,Mar. Geol., 48, 1982, 135–64.

    Google Scholar 

  45. Robbins, J. A., ‘Stratigraphic and dynamic effects of sediment reworking by Great Lakes zoobenthos’,Hydrobiol., 92, 1982, 611–22.

    Google Scholar 

  46. Elderfield, H., and Hepworth, A., ‘Diagenesis, metals and pollution in estuaries’,Mar. Pollut. Bull., 6, 1975, 85–7.

    Google Scholar 

  47. Price, N. B., ‘Chemical diagenesis in sediments’,in Riley, J. P., and Chester, R. (Editors),Chemical Oceanography. Academic Press, London, 1976 (Second edition), Vol. 6, 1–58.

    Google Scholar 

  48. Farmer, J. G., and Cross, J. D., ‘The determination of arsenic in Loch Lomond sediment by instrumental neutron activation analysis’,Radiochem. Radioanal. Lett., 39, 1979, 429–40.

    Google Scholar 

  49. Lynn, D. C., and Bonatti, E., ‘Mobility of manganese in diagenesis of deep-sea sediments’,Mar. Geol., 3, 1965 457–74.

    Google Scholar 

  50. Mackereth, F. J. H., ‘Some chemical observations on post-glacial lake sediments’,Phil. Trans. R. Soc Lond., B250, 1966, 165–213.

    Google Scholar 

  51. Gupta, S. K., and Chen, K. Y., ‘Partitioning of trace metals in selective chemical fractions of nearshore sediments’,Environ. Lett., 10, 1975, 129–58.

    Google Scholar 

  52. Farmer, J. G., ‘The analytical chemist in studies of metal pollution in sediment cores’,Anal. Proc., 18, 1981, 249–52.

    Google Scholar 

  53. Förstner, U., Calmano, W., Conradt, K., Jaksch, Schimkus, C., and Schoer, J., ‘Chemical speciation of heavy metals in solid waste materials (sewage sludge, mining wastes, dredged materials, polluted sediments) by sequential extraction’,Proc. Third Intern. Conf. Heavy Metals Environ., Amsterdam, 1981, 698–704.

  54. Luoma, S. N., and Jenne, E. A., ‘Estimating bioavailability of sediment-bound trace metals with chemical extractants’,in D. D. Hemphill (Editor),Trace Substances in Environmental Health — X, Colombia, Missouri, 1976, 343–51.

  55. Reuther, R., Wright, R. F., and Förstner, U., ‘Distribution and chemical forms of heavy metals in sediment cores from two Norwegian lakes affected by acid precipitation’,Proc. Third Intern. Conf. Heavy Metals Environ., Amsterdam, 1981, 318–21.

  56. Davis, A. O., Galloway, J. N., and Nordstrom, D. K., ‘Lake acidification: its effect on lead in the sediment of two Adirondack lakes’,Limnol. Oceanogr., 27, 1982, 163–7.

    Google Scholar 

  57. Lagerwerff, J. V., and Specht, A. W., ‘Contamination of roadside soil and vegetation with cadmium, nickel, lead and zinc’,Environ. Sci. Technol., 4, 1970, 583–6.

    Google Scholar 

  58. Farmer, J. G., and Lyon, T. D. B., ‘Lead in Glasgow street dirt and soil’,Sci. Total Environ., 8, 1977, 89–93.

    Google Scholar 

  59. Purves, D.,Trace-element Contamination of the Environment, Amsterdam: Elsevier Scientific Publishing Co., 1977, 260pp.

    Google Scholar 

  60. Harrison, R. M., ‘Toxic metals in street and household dusts’,Sci. Total Environ., 11, 1979, 89–97.

    PubMed  Google Scholar 

  61. Davies, B. E., ‘Trace element pollution’,in Davies, B. E., (Editor),Applied Soil Trace Elements. John Wiley and Son, 1980, 287–351.

  62. Smith, M. A. ‘Tentative guidelines for acceptable concentrations of contaminants in soils’, DOE ICRCL 47/81, presented at ‘The hazards of contaminated land’, Geol. Soc. Discussion Meeting, London, 1981, 9pp.

  63. Parry, G. D. R., Johnson, M. S., and Bell, R. M., ‘Trace metal surveys of soil as a component of strategic and local planning policy development’,Environ. Pollut., B2, 1981, 97–107.

    Google Scholar 

  64. Duggan, M. J., ‘Lead in urban dust: an assessment’,Water, Air and Soil Pollut., 14, 1980, 309–21.

    Google Scholar 

  65. Jackson, M. L.,Soil Chemical Analysis. Englewood Cliffs, NJ, USA: Prentice-Hall, 1958, 485pp.

    Google Scholar 

  66. Scott, R. O., Mitchell, R. L., Purves, D., and Voss, R. C.,Spectrochemical Methods for the Analysis of Soils, Plants and Other Agricultural Materials, Aberdeen: Macaulay Institute for Soil Research, 1971, 87pp.

    Google Scholar 

  67. Mitchell, R. L., and Burridge, J. C., ‘Trace elements in soils and crops’,Phil. Trans. R. Soc. Lond., B288, 1979, 15–24.

    Google Scholar 

  68. West, T. S.,Biosignificance and Analysis of Trace Elements in Agricultural Soils, The First Tom Miller Memorial Lecture, The North of Scotland College of Agriculture, 1979, 33pp.

  69. Davies, B. E., Ginnever, R. C., and McLellan, J. M.,The Estimation of the Availability to Plants of Polluting Metals in Soils, paper presented at Intern. Environ, and Safety Exhibn. and Conf., Wembley, 1980, 9pp.

  70. MAFF,Inorganic Pollution and Agriculture, Ref. Book 3, London: HMSO, 1980, 324pp.

    Google Scholar 

  71. Mitchell, R. L., ‘Trace elements in soils’,in ‘Trace elements in soils and crops’,MAFF Tech. Bull., 21, 1971, 8–20.

    Google Scholar 

  72. Webb, J. S., Thornton, I., Thompson, R. J., Howarth, R. J., and Lowenstein, P. L.,The Wolfson Geochemical Atlas of England and Wales. Oxford Univ. Press, 1978, 70pp.

  73. Webb, J. S., and Howarth, R. J., ‘Regional geochemical mapping’,Phil. Trans. R. Soc. Lond., B288, 1979, 81–93.

    Google Scholar 

  74. Engler, R. M., Brannon, J. M., Rose, J., and Bigham, G., ‘A practical selective extraction procedure for sediment characterisation’,in Yen, T. F. (Editor),Chemistry of Marine Sediments, Ann Arbor Science, Michigan, USA, 1977, 163–71.

    Google Scholar 

  75. Tessier, A., Campbell, P. G. C., and Bisson, M., ‘Sequential extraction procedure for the speciation of particulate trace metals’,Anal. Chem., 51, 1979, 844–51.

    Google Scholar 

  76. Wilber, W. G., and Hunter, J. V., ‘Distribution of metals in street sweepings, stormwater solids and urban aquatic sediments’,J. Water. Pollut. Contr. Fed., 51, 1979, 2810–22.

    Google Scholar 

  77. Harrison, R. M., Laxen, D. P. H., and Wilson, S. J., ‘Chemical associations of lead, cadmium, copper and zinc in street dusts and roadside soils’,Environ. Sci. Technol., 15, 1981, 1378–83.

    Google Scholar 

  78. Gibson, M. J., and Farmer, J. G.,in preparation.

  79. Chester, R., and Hughes, M. J., ‘A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments’,Chem. Geol., 3, 1967, 199–212.

    Google Scholar 

  80. Chao, T. T., ‘Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride’,Soil Sci. Soc. Amer. Proc., 36, 1972, 764–8.

    Google Scholar 

  81. Presley, B. J., Kolodny, Y., Nissenbaum, A., and Kaplan, I. R., ‘Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia. I. Trace element distribution in interstitial water and sediment’,Geochim. Cosmochim. Acta, 36, 1972, 1073–90.

    Google Scholar 

  82. Chao, T. T., and Theobald Jr., P. K., ‘The significance of secondary iron and manganese oxides in geochemical exploration’,Econ. Geol., 71, 1976, 1560–69.

    Google Scholar 

  83. Farmer, J. G., and Gibson, M. J., ‘Direct determination of cadmium, chromium, copper and lead in siliceous standard reference materials from a fluoboricacidmatrix by graphite furnace atomic absorption spectrometry’,At. Spectrose., 2, 1981, 176–8.

    Google Scholar 

  84. Biggins, P. D. E., and Harrison, R. M., ‘Identification of lead compounds in urban air’,Nature, 272, 1978, 531–2.

    Google Scholar 

  85. Biggins, P. D. E., and Harrison, R. M., ‘Chemical speciation of lead compounds in street dusts’,Environ. Sci. Technol., 14, 1980, 336–9.

    Google Scholar 

  86. Fishbein, L., ‘Chromatographic and biological aspects of inorganic mercury’,Chromatogr. Rev., 15, 1971, 195–238.

    Google Scholar 

  87. Cassidy, R. M., ‘The separation and determination of metal species by modern liquid chromatography’,in Lawrence, J. F. (Editor),Trace Analysis, Academic Press, NY, 1981, Vol. 1, 121–92.

    Google Scholar 

  88. Nürnberg, H. W., ‘Studies on toxic trace metals in the environment by advanced polarographic methods’,Anal. Proc., 15, 1978, 275–83.

    Google Scholar 

  89. Nürnberg, H. W., ‘Voltammetric studies on toxic metal speciation in natural waters’,Proc. Third Intern. Conf. Heavy Metals Environ., Amsterdam, 1981, 635–40.

  90. Ebdon, L., Ward, R. W., and Leathard, D. A., ‘Approaches to trace-metal speciation in environmental samples’,Anal. Proc., 19, 1982, 110–14.

    Google Scholar 

  91. Van Loon, J. C., ‘Review of methods for elemental speciation using atomic spectrometry detectors for chromatography’,Can. J. Spectrosc. 26, 1981, 22A-32A.

    Google Scholar 

  92. Brinckman, F. E., and Bellama, J. M. (Editors),Organometals and Organometalloids: Occurrence and Fate in the Environment, ACS Symp. Series 82, Washington, DC: Am. Chem. Soc., 1978, 447pp.

    Google Scholar 

  93. Grandjean, P., and Nielsen, T., ‘Organolead compounds: Environmental health aspects’,Residue Rev., 72, 1979, 98–148.

    Google Scholar 

  94. Harrison, R. M., Laxen, D. P. H., and Birch, J., ‘Tetraalkyl lead in air: sources, sinks and concentrations’,Proc. Second Intern. Conf. Heavy Metals Environ., London, 1979, 257–61.

  95. Birch, J., Harrison, R. M., and Laxen, D. P. H., ‘A specific method for 24–48 hour analysis of tetraalkyl lead in air’,Sci. Total Environ., 14, 1980, 31–42.

    Google Scholar 

  96. Rohbock, E., Georgii, H. -W., and Müller, J., ‘Measurements of gaseous lead alkyls in polluted atmospheres’,Atmos. Environ., 14, 1980, 89–98.

    Google Scholar 

  97. Nielsen, T., Egsgaard, H., Larsen, E., and Schroll, G., ‘Determination of tetramethyl lead and tetraethyl lead in the atmosphere by a two-step enrichment method and gas chromatographic-mass spectrometric isotope dilution analysis’,Anal. Chim. Acta, 124, 1981, 1–13.

    Google Scholar 

  98. Needleman, H. L., Gunnoe, C., Leviton, A., Reed, R., Peresie, H., Maher, C., and Barrett, P., ‘Deficits in psychologic and classroom performance of children with elevated dentine lead levels’,N. Eng. J. Med., 300, 1979, 689–95.

    Google Scholar 

  99. DHSS (UK),Lead and Health, A report of the working party on lead in the environment, London: HMSO, 1980, 129pp.

    Google Scholar 

  100. Settle, D. M., and Patterson, C. C., ‘Lead in albacore: guide to lead pollution in Americans’,Science, 207, 1980, 1167–76.

    Google Scholar 

  101. Gloag, D., ‘Is low-level lead pollution dangerous?’,Br. Med. J., 281, 1980, 1622–5.

    Google Scholar 

  102. Bryce-Smith, D., and Stephens, R., ‘Lead or Health’, London: Conservation Society Pollution Working Party, 1981 (second edition), 116pp.

    Google Scholar 

  103. Needleman, H. L., and Landrigan, P. J., ‘The health effects of low-level exposure to lead’,Ann. Rev. Publ. Hlth, 2, 1981, 277–98.

    Google Scholar 

  104. Gibson, M. J., and Farmer, J. G., ‘Tetraalkyl lead in the urban atmosphere of Glasgow’,Environ. Technol. Lett., 2, 1981, 521–30.

    Google Scholar 

  105. Harrison, R. M., and Laxen, D. P. H., ‘Natural source of tetraalkyl lead in air’,Nature, 275, 1978, 738–40.

    Google Scholar 

  106. Chau, Y. K., and Wong, P. T. S., ‘Biotransformation and toxicity of lead in the aquatic environment’in Branica, M., and Konrad, Z. (Editors),Proc. Int. Exp. Discussion on Lead Occurrence, Fate and Pollution in the Marine Environment, Rovinj, Yugoslavia, Pergamon Press, 1979, 225–31.

    Google Scholar 

  107. Wood, J. M., ‘Lead in the marine environment: Some biochemical considerations’,ibid.in, 299–303.

    Google Scholar 

  108. Craig, P. J., ‘Methylation of trimethyl lead species in the environment: an abiotic process?’,Environ. Technol. Lett., 1, 1980, 17–20.

    Google Scholar 

  109. Thompson, J. A. J., and Crerar, J. A., ‘Methylation of lead in marine sediments’,Mar. Pollut. Bull., 11, 1980, 251–3.

    Google Scholar 

  110. Reisinger, K., Stoeppler, M., and Nürnberg, H. W., ‘Evidence for the absence of biological methylation of lead in the environment’,Naturé, 291, 1981, 228–30.

    Google Scholar 

  111. Baker, M. D., Wong, P. T. S., Chau, Y. K., Mayfield, C. I., and Inniss, W. E., ‘Methylation of lead, mercury, arsenic and selenium in the acidic aquatic environment’,Proc. Third Intern. Conf. Heavy Metals Environ., Amsterdam, 1981, 645–8.

  112. Reisinger, K., Stoeppler, M., and Nürnberg, H. W., ‘On the biological methylation of lead, mercury, methylmercury and arsenic in the environment’,ibid., 649–52.

  113. Radziuk, B., Thomassen, Y., and Van Loon, J. C., ‘Determination of alkyl lead compounds in air by gas chromatography and atomic absorption spectrometry’,Anal. Chim. Acta, 105, 1979, 255–62.

    Google Scholar 

  114. de Jonghe, W., Chakraborti, D., and Adams, F., ‘Graphite-furnace atomic absorption spectrometry as a metal-specific detection system for tetraalkyl lead compounds separated by gas-liquid chromatography’,ibid., 115, 1980, 89–101.

    Google Scholar 

  115. de Jonghe, W. R. A., Chakraborti, D., and Adams, F. C., ‘Identification and determination of individual tetraalkyl lead species in air’,Environ. Sci. Technol., 15, 1981, 1217–22.

    Google Scholar 

  116. Ferguson, J. F., and Gavis, J., ‘A review of the arsenic cycle in natural waters’,Water Res., 6, 1972, 1259–74.

    Google Scholar 

  117. Braman, R. S., and Foreback, C. C., ‘Methylated forms of arsenic in the environment’,Science, 182, 1973, 1247–9.

    PubMed  Google Scholar 

  118. Penrose, W. R., ‘Arsenic in the marine and aquatic environments: analysis, occurrence and significance’,CRC Crit. Rev. Environ. Control, 4, 1974, 465–82.

    Google Scholar 

  119. Peoples, S. A., ‘Review of arsenical pesticides’,in Woolson, E. A. (Editor),Arsenical Pesticides, ACS Symp. Series 7, Am. Chem. Soc, Washington, DC, 1975, 1–12.

    Google Scholar 

  120. Braman, R. S.,‘Arsenic in the environment’,ibid.in, 108–23.

    Google Scholar 

  121. Woolson, E. A., ‘Fate of arsenicals in different environmental substrates’,Environ. Hlth. Persp., 19, 1977, 73–81.

    Google Scholar 

  122. WHO,Environmental Health Criteria 18. Arsenic, Geneva: WHO, 1981, 174pp.

    Google Scholar 

  123. Fishbein, L., ‘Sources, transport and alterations of metal compounds: an overview I. Arsenic, beryllium, cadmium, chromium and nickel’,Environ. Hlth. Persp., 40, 1981, 43–64.

    Google Scholar 

  124. Mohan, M. S., Zingaro, R. A., Micks, P., and Clark, P. J., ‘Analysis of speciation of arsenic in herbicide-treated soils by DC helium emission spectrometry’,Intern. J. Environ. Anal. Chem., 11, 1982, 175–87.

    Google Scholar 

  125. Woolson, E. A., Aharonson, N., and Iadevia, R., ‘Application of the high performance liquid chromatography — flameless atomic absorption method to the study of alkyl arsenical herbicide metabolism in soil’,J. Agric. Food Chem., 30, 1982, 580–84.

    Google Scholar 

  126. Pyles, R. A., and Woolson, E. A., ‘Quantitation and characterization of arsenic compounds in vegetables grown in arsenic acid treated soil’,ibid, 866–70.

    Google Scholar 

  127. Walsh, P. R., Duce, R. A., and Fasching, J. L., ‘Consideration of the enrichment, sources and flux of arsenic in the troposphere’,J. Geophys. Res., 84, 1979, 1719–26.

    Google Scholar 

  128. Andreae, M. O., ‘Arsenic in rain and the atmospheric mass balance of arsenic’,J. Geophvs. Res., 85, 1980, 4512–18.

    Google Scholar 

  129. Woolson, E. A., ‘Bioaccumulation of arsenicals’,in Woolson, E. A., (Editor),Arsenical pesticides, ACS Symp. Series 7, Am. Chem. Soc., Washington, DC, 1975, 97–107.

    Google Scholar 

  130. Andreae, M. O., ‘Distribution and speciation of arsenic in natural waters and some marine algae’,Deep Sea Res., 25, 1978, 391–402.

    Google Scholar 

  131. Andreae, M. O., ‘Arsenic speciation in seawater and interstitial waters: the influence of biological-chemical interactions on the chemistry of a trace element’,Limnol. Oceanogr., 24, 1979, 440–52.

    Google Scholar 

  132. Neal, C., Elderfield, H., and Chester, R., ‘Arsenic in sediments of the north Atlantic Ocean and the eastern Mediterranean Sea’,Mar. Chem., 7, 1979, 207–19.

    Google Scholar 

  133. Sanders, J. G., ‘Arsenic cycling in marine systems’,Mar. Environ. Res., 3, 1980, 257–66.

    Google Scholar 

  134. Waslenchuk, D. G., and Windom, H. L., ‘Factors controlling the estuarine chemistry of arsenic’,Est. Coast. Mar. Sci., 7, 1978, 455–64.

    Google Scholar 

  135. Klumpp, D. W., and Peterson, P. J., ‘Arsenic and other trace elements in the waters and organisms of an estuary in SW England’,Environ. Pollut., 19, 1979, 11–20.

    Google Scholar 

  136. Langston, W. J., ‘Arsenic in UK estuarine sediments and its availability to benthic organisms’,J. Mar. Biol. Assoc. UK, 60, 1980, 869–81.

    Google Scholar 

  137. Maher, W. A., ‘Determination of inorganic and methylated arsenic species in marine organisms and sediments’,Anal. Chim. Acta, 126, 1981, 157–65.

    Google Scholar 

  138. Howard, A. G., Arbab-Zavar, M. H., and Apte, S., ‘Seasonal variability of biological arsenic methylation in the estuary of the River Beaulieu’,Mar. Chem., 11, 1982 493–8.

    Google Scholar 

  139. Scudlark, J. R., and Johnson, D.L., ‘Biological oxidation of arsenite in seawater’,Est. Coast Shelf Sci., 14, 1982, 693–706.

    Google Scholar 

  140. Crecelius, E. A., ‘The geochemical cycle of arsenic in Lake Washington and its relation to other elements’,Limnol. Oceangr., 20, 1975, 441–50.

    Google Scholar 

  141. Holm, T. R., Anderson, M. A., Iverson, D. G., and Stanforth, R. S., ‘Heterogeneous reactions of arsenic in aquatic systems’in Jenne, E. A. (Editor),Chemical Modeling in Aqueous Systems, ACS Symp. Series 93, Am. Chem. Soc, Washington, DC, 1979, 711–36.

    Google Scholar 

  142. Holm, T. R., Anderson, M. A., Stanforth, R. R., and Iverson, D. G., ‘Influence of adsorption on the rates of microbial degradation of arsenic species in sediments’,Limnol. Oceangr., 25, 1980, 23–30.

    Google Scholar 

  143. Abdelghani, A. A., Reimers, R. S., Anderson, A. C., Englande Jr., A. J., Lo, C. P., and Shariatpanahi, M., ‘Transport and distribution of arsenic in sediments’,Proc. Third Intern. Conf. Heavy Metals Environ., Amsterdam. 1981, 665–8.

  144. Christensen, E. R., and Chien, N. K., ‘Fluxes of arsenic, lead, zinc and cadmium to Green Bay and Lake Michigan sediments’,Environ. Sci. Technol., 15, 1981, 553–8.

    Google Scholar 

  145. Brown, E. J., Luong, H. V., and Forshang, J. M., ‘The occurrence of Thiobacillus Ferrooxidans and arsenic in subarctic streams affected by gold-mine drainage’,Arctic., 35, 1982, 417–21.

    Google Scholar 

  146. Huang, P. M., Oscarson, D. W., Liaw, W. K., and Hammer, U. T., ‘Dynamics and mechanisms of arsenite oxidation by freshwater lake sediments’,Hydrobiol., 91, 1982, 315–22.

    Google Scholar 

  147. Cherry, J. A., Shaikh, A. U., Tallman, D. E., and Nicholson, R. V., ‘Arsenic species as an indicatorof redox conditions in groundwater’,J. Hydrol., 43, 1979, 373–92.

    Google Scholar 

  148. Gulens, J., Champ, D. R., and Jackson, R. E., ‘Influence of redox environments on the mobility of arsenic in ground water’,in Jenne, E. A. (Editor),Chemical Modeling in Aqueous Systems, ACS Symp. Series, 93, Am. Chem. Soc, Washington, DC, 1979, 81–95.

    Google Scholar 

  149. Matissof, G., Khourey, C. J., Hall, J. F., Varnes, A. W., and Strain, W. H., ‘The nature and source of arsenic in Northeastern Ohio ground water’,Ground Water, 20, 1982, 446–56.

    Google Scholar 

  150. Lunde, G., ‘A comparison of organoarsenic compounds from different marine organisms’,J. Sci. Food Agric., 26, 1975, 1257–62.

    Google Scholar 

  151. Edmonds, J. S., Francesconi, K. A., Cannon, J. R., Raston, C. L., Skelton, B. W., and White, A. H., ‘Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituent of the Western Rock Lobster,Panulirus Lonqipes Cignus George’,Tetrahed. Lett., 18, 1977, 1543–6.

    Google Scholar 

  152. Cooney, R. V., Mumma, R. O., and Benson, A. A., ‘Arsoniumphospholipid in algae’,Proc. Natl Acad. Sci. USA, 75, 1978, 4262–4.

    Google Scholar 

  153. Cannon, J. R., Edmonds, J. S., Francesconi, K. A., and Langsford, J. B., ‘Arsenic in marine fauna’,Proc. Second Intern. Conf. Heavy Metals Environ., London, 1979, 283–6.

  154. Kurosawa, S., Yasuda, K., Taguchi, M., Yamazaki, S., Toda, S., Morita, M., Uehiro, T., and Fuwa, K., ‘Identification of arsenobetaine, a water-soluble organo-arsenic compound in muscle and liver of a shark,Prionace glaucus’.Agric. Biol. Chem. 44, 1980, 1993–4.

    Google Scholar 

  155. Benson, A. A., and Summons, R. E., ‘Arsenic accumulation in Great Barrier Reef invertebrates’,Science, 211, 1981, 482–3.

    Google Scholar 

  156. Edmonds, J. S., and Francesconi, K. A., ‘The origin and chemical form of arsenic in the school whiting’,Mar. Pollut. Bull., 12, 1981, 92–6.

    Google Scholar 

  157. Edmonds, J. S., and Francesconi, K. A., ‘Isolation and identification of arsenobetaine from the American lobsterHomarus Americanus’,Chemosphere, 10, 1981, 1041–4.

    Google Scholar 

  158. Flanjak, J., ‘Inorganic and organic arsenic in some commercial East Australian Crustacea’,J. Sci. Food Agric., 33, 1982, 579–83.

    Google Scholar 

  159. Nissen, P., and Benson, A. A., ‘Arsenic metabolism in freshwater and terrestrial plants’,Physiol. Plant., 54, 1982, 446–50.

    Google Scholar 

  160. Norin, H., and Christakopoulos, A., ‘Evidence for the presence of arsenobetaine and another organoarsenical in shrimps’,Chemosphere, 11, 1982, 287–98.

    Google Scholar 

  161. Forshufvud, S., Smith, H., and Wassen, A., ‘Arsenic content of Napoleon I's hair probably taken immediately after his death’,Nature, 192, 1962, 103–5.

    Google Scholar 

  162. Kipling, M. D., ‘Arsenic’,in Lenihan, J., and Fletcher, W. W. (Editors),Environment and Man, Blackie and Son, Glasgow, 1977, Vol. 6, 93–120.

    Google Scholar 

  163. Leslie, A. C. D., and Smith, H., ‘Self-poisoning by the abuse of arsenic-containing tonics’,Med. Sci. Law, 18, 1978, 159–62.

    Google Scholar 

  164. Pershagen, G., ‘The carcinogenicity of arsenic’,Environ. Hlth Persp., 40, 1981, 93–100.

    Google Scholar 

  165. Hutton, J. T., Christians, B. L., and Dippel, R. L., ‘Arsenic poisoning’,N. Eng. J. Med., 307, 1982, 1080.

    Google Scholar 

  166. Jones, D. E. H., and Ledingham, K. W. D., ‘Arsenic in Napoleon's wallpaper’,Nature, 299, 1982, 626–7.

    Google Scholar 

  167. Clay, J. E., Dale, I. M., and Cross, J. D., ‘Arsenic absorption in steel bronze workers’,J. Soc. Occup. Med., 27, 1977, 102–4.

    Google Scholar 

  168. Cross, J. D., Dale, I. M., Leslie, A. C. D., and Smith, H., ‘Industrial exposure to arsenic’,J. Radioanal. Chem., 48, 1979, 197–208.

    Google Scholar 

  169. Braman, R. S., Johnson, D. L., Foreback, C. C., Ammons, J. M., and Bricker, J. L., ‘Separation and determination of nanogram amounts of inorganic arsenic and methylarsenic compounds’,Anal. Chem., 49, 1977, 621–5.

    Google Scholar 

  170. Andreae, M. O., ‘Determination of arsenic species in natural waters’,ibid., 820–23.

    Google Scholar 

  171. Yasui, A., Tsutsumi, C., and Toda, S., ‘Selective determination of inorganic arsenic (III), (V) and organic arsenic in biological materials by solvent-extraction-atomic absorption spectrophotometry’,Agric. Biol. Chem., 42, 1978, 2139–45.

    Google Scholar 

  172. Lauwerys, R. R., Buchet, J. P., and Roels, H., ‘The determination of trace levels of arsenic in human biological materials’.Arch. Toxicol., 41, 1979, 239–47.

    Google Scholar 

  173. Stockton, R. A., and Irgolic, K. J., ‘The Hitachi graphite furnace — Zeeman atomic absorption spectrometer as an automated, element-specific detector for high pressure liquid chromatography: the separation of arsenobetaine, arsenocholine and arsenite/arsenate’,Intern. J. Environ. Anal. Chem., 6, 1979, 313–9.

    Google Scholar 

  174. Brinckman, F. E., Jewett, K. L., Inverson, W. P., Irgolic, K. J., Ehrhardt, K. C., and Stockton, R. A., ‘Graphite furnace atomic absorption spectrophotometers as automated element-specific detectors for high-pressure liquid chromatography. The determination of arsenite, arsenate, methylarsonic acid and dimethylarsinic acid’,J. Chromatogr., 191, 1980, 31–46.

    Google Scholar 

  175. Buchet, J. P., Lauwerys, R., and Roels, H., ‘Comparison of several methods for the determination of arsenic compounds in water and in urine. Their application for the study of arsenic metabolism and for the monitoring of workers exposed to arsenic’,Int. Arch. Occup. Environ. Hlth. 46, 1980, 11–29.

    Google Scholar 

  176. Iverson, D. G., Anderson, M. A., Holm, T. R., and Stanforth, R. R., ‘Column chromatography and flameless atomic absorption methods for arsenic speciation in sediments’,in Baker, A. (Editor),Contaminants and Sediments, Ann Arbor Science, Michigan, USA, 1980, Vol. 2, 29–41.

    Google Scholar 

  177. Wauchope, R. D., and Yamamoto, M., ‘Extraction, speciation and analysis of arsenic and arsenical herbicides in run-off: evaluation of simple methods at the ppb level’,J. Environ. Qual., 9, 1980, 597–600.

    Google Scholar 

  178. Woolson, E. A., and Aharonson, N., ‘Separation and detection of arsenical pesticide residues and some of their metabolites by high pressure liquid chromatographygraphite furnace atomic absorption spectrometry’,J. Assoc. Off. Anal. Chem., 63, 1980, 523–8.

    Google Scholar 

  179. Grabinski, A. A., ‘Determination of arsenic (III), arsenic (V), monomethylarsonate and dimethylarsinate by ion-exchange chromatography with flameless atomic absorption spectrometric detection’,Anal. Chem., 53, 1981, 966–8.

    Google Scholar 

  180. Norin, H., and Vahter, M., ‘A rapid method for the selective analysis of total urinary metabolites of inorganic arsenic’,Scand. J. Work Environ. Hlth, 7, 1981, 38–44.

    Google Scholar 

  181. Pacey, G. E., and Ford, J. A., ‘Arsenic speciation by ion exchange separation and graphite furnace atomic absorption spectrometry’,Talanta, 28, 1981, 935–8.

    Google Scholar 

  182. Ricci, G. R., Shepard, L. S., Colovos, G., and Hester, N. E., ‘Ion chromatography with atomic absorption spectrometric detection for determination of organic and inorganic arsenic species’,Anal. Chem., 53, 1981, 610–13.

    Google Scholar 

  183. Takamatsu, T., Aoki, H., and Yoshida, Y., ‘Determination of arsenate, arsenite, monomethyl-arsonate and dimethylarsinate in soil polluted with arsenic’,Soil Sci., 133, 1982, 239–46.

    Google Scholar 

  184. Lovell, M. A., and Farmer, J. G., ‘The determination of arsenic in soil and sediment digests by graphite furnace atomic absorption spectrometry’,Intern. J. Environ. Anal. Chem., 14, 1983, 181–92.

    Google Scholar 

  185. Lovell, M. A., and Farmer, J. G.,in preparation.

  186. Mahieu, P., Buchet, J. P., Roels, H. A., and Lauwerys, R., ‘The metabolism of arsenic in humans accutely intoxicated by As2O3. Its significance for the duration of BAL therapy’.Clin. Toxicol., 18, 1981, 1067–75.

    Google Scholar 

  187. Smith, T. J., Crecelius, E. A., and Reading, J. C., ‘Airborne arsenic exposure and excretion of methylated arsenic compounds’,Environ. Hlth. Persp., 19, 1977, 89–93.

    Google Scholar 

  188. Crecelius, E. A., ‘Changes in the chemical speciation of arsenic following ingestion by man’,ibid., 147–50.

    Google Scholar 

  189. Buchet, J. P., Lauwerys, R., and Roels, H., ‘Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium metaarsenite by volunteers’,Int. Arch. Occup. Environ. Hlth., 48, 1981, 111–8.

    Google Scholar 

  190. Freeman, H. C., Uthe, J. F., Fleming, R. B., Odense, P. H., Ackman, R. G., Landry, G., and Musial, C., ‘Clearance of arsenic ingested by man from arsenic contaminated fish’,Bull. Environ. Contamn. Toxicol, 22, 1979, 224–9.

    Google Scholar 

  191. Fukui, S., Hirayama, T., Nohara, M., and Sakagami, Y., ‘Studies on the chemical forms of arsenic in sea foods and in urine after eating these foods’,Eisei Kakagu, 28, 1982, 35.

    Google Scholar 

  192. Delves, H. T., ‘The clinical value of trace-metal measurements’,Essays Med. Biochem., 2, 1976, 37–73.

    Google Scholar 

  193. Fell, G. S., Shenkin, A., and Halls, D. J., ‘Trace element analysis as a diagnostic tool in clinical medicine’,in BrÄtter, P., and Schramel, P., (Editors),Trace Element Analytical Chemistry in Medicine and Biology, W. de Gruyter, Berlin, 1980, 217–32.

    Google Scholar 

  194. Dawson, J. B., and Bahreyni-Toosi, M. H., ‘Determination of copper and zinc in plasma protein fractions by means of column chromatography and atomic absorption spectrophotometry’,ibid.in, 461–7.

    Google Scholar 

  195. Gardiner, P. E., Ottaway, J. M., Fell, G. S., and Burns, R. R., ‘The application of gel filtration and electrothermal atomic absorption spectrometry to the speciation of protein-bound zinc and copper in human blood serum’,Anal. Chim. Acta, 124, 1981, 281–94.

    Google Scholar 

  196. Gardiner, P. E., Rösick, E., Rösick, U., BrÄtter, P., and Kynast, G., ‘The application of gel filtration, immunonephelometry and electrothermal atomic absorption spectrometry to the study of the distribution of copper-, iron- and zinc-bound constituents in human amniotic fluid’,Clin. Chim. Acta, 120, 1982, 103–17.

    Google Scholar 

  197. Diplock, A. T., ‘Metabolic and functional defects in selenium deficiency’,Phil. Trans. R. Soc. Lond., B294, 1981, 105–17.

    Google Scholar 

  198. Shamberger, R. J., ‘Selenium in the environment’,Sci. Total Environ., 17, 1981, 59–74.

    Google Scholar 

  199. Young, V. R., ‘Selenium: a case for its essentiality in man’,N. Eng. J. Med., 304, 1981, 1228–30.

    Google Scholar 

  200. Schrauzer, G. N., and McGinness, J. E., ‘Observations of human selenium supplementation’,in Hemphill, D. D. (Editor),Trace Substances in Environmental Health, — XIII, Columbia, Missouri, 1979, 64–7.

  201. Young, V. R., Nahapetian, A., and Janghorbani, M., ‘Selenium bioavailability with reference to human nutrition’,Am. J. Clin. Nutr. 35, 1982, 1076–88.

    Google Scholar 

  202. Hamilton, E. I., ‘Relations between metal elements in man's diet and environmental factors’,in Hemphill D. D. (Editor),Trace Substances in Environmental Health — XIII, Columbia, Missouri, 1979, 3–15.

  203. Mertz, W., ‘Trace elements in nutrition’,in BrÄtter, P., and Schramel, P. (Editors),Trace Element Analytical Chemistry in Medicine and Biology, W. De Gruyter, Berlin, 1980, 727–44.

    Google Scholar 

  204. Chesters, J. K., ‘Nutritional chemistry of inorganic trace constituents in the diet’,Chem. Soc. Rev., 10, 1981, 270–79.

    Google Scholar 

  205. Mertz, W., ‘The scientific and practical importance of trace elements’,Phil. Trans. R. Soc. Lond., B294, 1981, 9–18.

    Google Scholar 

  206. Rosenberg, I. H., and Solomons, N. W., ‘Biological availability of minerals and trace elements: a nutritional overview’,Am. J. Clin. Nutr., 35, 1982, 781–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farmer, J.G., Gibson, M.J. & Lovell, M.A. Trace-element speciation and partitioning in environmental geochemistry and health. Minerals and the Environment 5, 57–66 (1983). https://doi.org/10.1007/BF02084898

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02084898

Keywords

Navigation