Skip to main content
Log in

Application of the nonequilibrium diagram technique to strongly driven atomic systems

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

The Keldysh nonequilibrium diagram technique is presented in a form suitable for calculating the nonlinear optical response of elementary quantum systems. It is shown that the integral equation arising in the diagram technique for two-temporal static Green functionF(t,t′) =G rΩG α is equivalent to a system of three equations one of which is the kinetic equation for the functionF at coinciding times, while the other two are necessary for calculating the collision integral in the first equation. These equations make it possible to expressF(t, t′) via its value for coinciding times at a time moment that corresponds to the minimum value of timest andt′ and is written separately fort>t′ andt<t′. Joint solution of these three equations always leads to a kinetic equation of the non-Markovian type. Equations that make it possible to apply the diagram technique for description of relaxation of the initial nonequilibrium distribution at the kinetic stage of evolution are given as well.

A general formal approach is also used for solving problems in which the effects of non-Markovian relaxation of quantum systems in light fields are important. Problems of the effect of a weak electromagnetic field on the relaxation process in multilevel systems and a strong resonant field in a two-level system are considered. A new method for calculating the spectral distribution of resonance fluorescence is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Apanasevich,Principles of Interaction of Light with Matter [in Russian], Nauka i Tekhnika, Minsk (1977).

    Google Scholar 

  2. P. N. Argyres and P. L. Kelly,Phys. Rev. A,134, 98 (1964).

    Google Scholar 

  3. É. G. Pestov,Zh. Éksp. Teor. Fiz.,86, 1643 (1984).

    Google Scholar 

  4. A. G. Zhidkov,Zh. Éksp. Teor. Fiz.,88, 372 (1985).

    Google Scholar 

  5. Y. Rabin, D. Grimbert, and S. Mukamel,Phys. Rev. A,26, 271 (1982).

    Google Scholar 

  6. S. Mukamel,Phys. Rept.,93, 1 (1982).

    Google Scholar 

  7. S. Mukamel, D. Grimbert, and Y. Babin,Phys. Rev. A,26, 341 (1982).

    Google Scholar 

  8. É. G. Pestov,Kvantov. Électron.,44, 1031 (1987).

    Google Scholar 

  9. Z. Deng,J. Phys. B,18, 2387 (1985).

    Google Scholar 

  10. Z. Deng and S. Mukamel,Phys. Rev. A,29, 1914 (1984).

    Google Scholar 

  11. E. Hanamura,J. Phys. Soc. Japan,52, 3265 (1983).

    Google Scholar 

  12. B. A. Grishanin,Zh. Éksp. Teor. Fiz.,85, 447 (1983).

    Google Scholar 

  13. M. Aihara,Phys. Rev. B,27, 5904 (1983).

    Google Scholar 

  14. S. Mukamel,Phys. Rev. A,28, 3480 (1983).

    Google Scholar 

  15. E. Hanamura,J. Phys. Soc. Japan,52, 3678 (1983).

    Google Scholar 

  16. J. H. Eberly and M. Yamanoi,Phys. Rev. Lett.,52, 1353 (1984).

    Google Scholar 

  17. R. G. Brewer and R. G. DeVoe,Phys. Rev. Lett.,52, 1354 (1984).

    Google Scholar 

  18. A. Schenzle, M. Mitsunaga, R. G. DeVoe, and R. G. Brewer,Phys. Rev. A,30, 325 (1984).

    Google Scholar 

  19. M. Yamanoi and J. H. Eberly,J. Opt. Soc. Amer. B,1, 751 (1984).

    Google Scholar 

  20. E. Wodkiewicz and J. H. Eberly,Phys. Rev. A,32, 992 (1985).

    Google Scholar 

  21. P. R. Berman and R. G. Brewer,Phys. Rev. A,32, 2784 (1985).

    Google Scholar 

  22. P. A. Apanasevich, S. Ya. Kilin, A. P. Nizovtsev, and N. S. Onishchenko,Opt. Commun.,52, 279 (1984).

    Google Scholar 

  23. P. A. Apanasevich, S. Ya. Kilin, A. P. Nizovtsev, and N. S. Onishchenko,J. Opt. Soc. Amer. B,3, 587 (1986).

    Google Scholar 

  24. P. R. Berman,J. Opt. Soc. Amer. B,3, 564 (1986).

    Google Scholar 

  25. M. Yamanoi and J. H. Eberly,Phys. Rev. A,34, 1009 (1986).

    Google Scholar 

  26. R. G. DeVoe and R. G. Brewer,Phys. Rev. Lett.,50, 1269 (1983).

    Google Scholar 

  27. L. V. Keldysh,Zh. Éksp. Teor. Fiz.,47, 1515 (1964).

    Google Scholar 

  28. M. Lax,Fluctuations and Coherent Phenomena in Classical and Quantum Physics, in Series: M. Cretien, E. P. Gross, and S. Deser (eds.),Statistical Physics, Phase Transitions and Superconductivity, Gordon and Breach, New York (1968).

    Google Scholar 

  29. A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskii,Methods of Quantum Field Theory in Statistical Physics [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

  30. An. V. Vinogradov, “Two types of nonlinear optical susceptibilities” [in Russian],Preprint of the Lebedev Physical Institute, No. 42, Moscow (1984).

  31. Yu. A. Kukharenko and S. G. Tikhodeev,Zh. Éksp. Teor. Fiz.,83, 1444 (1982).

    Google Scholar 

  32. An. V. Vinogradov,Kvantov. Électron.,13, 293 (1986).

    Google Scholar 

  33. A. G. Hall,J. Phys. A,8, 214 (1975).

    Google Scholar 

  34. A. G. Hall,Physica A,80, 369 (1975).

    Google Scholar 

  35. E. M. Épshtein,Fiz. Tverd. Tela,11, 27 (1969).

    Google Scholar 

  36. R. Pantel and G. Puthov,Fundamentals of Quantum Electronics, Wiley, New York (1969).

    Google Scholar 

  37. V. M. Fain,Photons and Nonlinear Media [in Russian], Sov. Radio, Moscow (1972).

    Google Scholar 

  38. S. S. Fanchenko,Zh. Éksp. Teor. Fiz.,85, 1936 (1983).

    Google Scholar 

  39. É. G. Pestov,Kvantov. Électron.,13, 247 (1986).

    Google Scholar 

  40. A. G. Redfield,Phys. Rev.,98, 1787 (1955).

    Google Scholar 

  41. R. G. Brewer and E. L. Khan,Sci. Amer.,251, 4 (1984).

    Google Scholar 

  42. T. Endo, T. Muramoto, and T. Haski,Opt. Commun.,52, 403 (1984).

    Google Scholar 

  43. An. V. Vinogradov, “Field action on relaxation processes in multilevel systems and high nonlinear optic susceptibilities,” Report at the Fifth Intern. Conference “Lasers and their applications,” Dresden (1985).

  44. A. A. Abrikosov and L. P. Gor'kov,Zh. Éksp. Teor Fiz.,39, 1781 (1960).

    Google Scholar 

  45. A. I. Burshtein,Zh. Éksp. Teor. Fiz.,49, 1362 (1965).

    Google Scholar 

  46. A. I. Burshtein,Zh. Éksp. Teor. Fiz.,48, 850 (1965).

    Google Scholar 

  47. D. A. Hutchinson,Canad. J. Phys.,63, 139 (1985).

    Google Scholar 

  48. B. A. Mollow,Phys. Rev. A,15, 1023 (1977).

    Google Scholar 

  49. P. L. Knight and P. W. Miloni,Phys. Repts.,66, 21 (1980).

    Google Scholar 

  50. A. Burnet,Phys. Repts.,118, 339 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Trudy Fizicheskogo Instituta im. P. N. Lebedeva (Proceedings of the Lebedev Physical Institute, Russian Academy of Sciences, Moscow), Vol. 187, pp. 117–143, 1988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinogradov, A.V. Application of the nonequilibrium diagram technique to strongly driven atomic systems. J Russ Laser Res 17, 551–578 (1996). https://doi.org/10.1007/BF02069173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02069173

Keywords

Navigation