Skip to main content
Log in

Power density spectra of frog skin potential, current and admittance functions during patch clamp

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Clamp current fluctuations in frog skin of areas down to 0.07 cm2 are dominated by low frequency components (<100 Hz). Patch clamp of 0.001 cm2 under high density fluorosilicone oil exhibits components up to 5000 Hz, often including a peak in the current power density spectrum. The admittance spectrum also exhibits a peak at the same frequency. In some skins no peak was observed, but the break in the curve was too sharp to be Lorentzian. In all instances the final limiting slope approached 1/f 2. The resonance peak was observed in either Cl or SO =4 Ringer's but disappeared when Na+ was replaced with K+. Resonance frequency varied from 100 to 700 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Begenisich, T., Stevens, C.F. 1975. How many conductance states do potassium channels have?Biophys. J. 15: 843

    Google Scholar 

  • Candia, O.A. 1970. The hyperpolarizing region of the current-voltage curve in frog skin.Biophys. J. 10: 323

    Google Scholar 

  • Chen, Y. 1976. Differentiation of channel models by noise analysis.Biophys. J. 16: 965

    Google Scholar 

  • Conti, F., DeFelice, L.J., Wanke, E. 1975. Potassium and sodium ion current noise in the membrane of the squid axon.J. Physiol. (London) 248: 45

    Google Scholar 

  • Derksen, H.E. 1965. Axon membrane voltage fluctuations.Acta Physiol. Pharmacol. Neerl. 13: 373

    Google Scholar 

  • Derksen, H.E., Verveen, A.A. 1966. Fluctuations of resting neural membrane potential.Science 151: 1388

    Google Scholar 

  • Finkelstein, A. 1961. Electrical excitability of isolated frog skin.Nature (London) 190: 1119

    Google Scholar 

  • Finkelstein, A. 1964. Electrical excitability of isolated frog skin and toad bladder.J. Gen. Physiol. 47: 545

    Google Scholar 

  • Fishman, H.M. 1975. Rapid complex impedance measurements of squid axon membrane via input-output cross correlation function.In: Proceedings of First Symposium on Testing and Identification of Nonlinear Systems. G.D. McCann and P.Z. Marmarelis, editors. p. 257. California Institute of Technology, Pasadena

    Google Scholar 

  • Fishman, H.M., Moore, L.E., Poussart, D.J.M. 1975. Potassium-ion conduction noise in squid axon membrane.J. Membrane Biol. 24: 305

    Google Scholar 

  • Fishman, H.M., Poussart, D.J.M., Moore, L.E. 1975. Noise measurements in squid axon membrane.J. Membrane Biol. 24: 281

    Google Scholar 

  • Hoshiko, T. 1975. Power density spectra (PDS) of frog skin.J. Gen. Physiol. 66: 16a

    Google Scholar 

  • Hoshiko, T., Moore, L.E. 1978. Fluctuation analysis of epithelial membrane kinetics.In: Membrane Transport Kinetics. Vol. 1, p. 179. J.F. Hoffman, editor. Raven Press, New York

    Google Scholar 

  • Johnston, K., Hoshiko, T. 1971. Novobiocin stimulation of frog skin current and some metabolic consequences.Am. J. Physiol. 220: 702

    Google Scholar 

  • Koefoed-Johnson, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42: 298

    Google Scholar 

  • Lindemann, B. 1978. The mechanism of Na-uptake through Na-selective channels in the epithelium of frog skin.In: Membrane Transport Processes. Vol. 1, p. 155. J.F. Hoffman, editor Raven Press, New York

    Google Scholar 

  • Lindemann, B., Thorns, U. 1967. Fast potential spike of frog skin generated at the outer surface of the epithelium.Science 158: 1473

    Google Scholar 

  • Lindemann, B., Van Driessche, W. 1977. Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover.Science 195: 292

    Google Scholar 

  • Mauro, A. 1961. Anomalous impedance, a phenomenological property of time-variant resistance.Biophys. J. 1: 353

    Google Scholar 

  • Mauro, A., Conti, F., Dodge, F., Schor, R. 1970. Subthreshold behavior and phenomenological impedance of the squid giant axon.J. Gen. Physiol. 55: 497

    Google Scholar 

  • Menninger, J.R., Snell, F.M., Spangler, R.A. 1960. Voltage clamp for biological investigations.Rev. Sci. Instr. 31: 519

    Google Scholar 

  • Poussart, D.J.M. 1969. Nerve membrane current noise: Direct measurements under voltage clamp.Proc. Nat. Acad. Sci. USA 64: 95

    Google Scholar 

  • Poussart, D.J.M. 1971. Membrane current noise in lobster axon under voltage clamp.Biophys. J. 11: 211

    Google Scholar 

  • Segal, J.R. 1972. Electrical fluctuations associated with active transport.Biophys. J. 12: 1371

    Google Scholar 

  • Seldin, J.P., Hoshiko, T. 1966. Ionic requirement for epinephrine stimulation of frog skin gland secretion.J. Exp. Zool. 163: 111

    Google Scholar 

  • Smith, P.G. 1975. Frequency dependence of the frog skin impedance.Biochim. Biophys. Acta 375: 124

    Google Scholar 

  • Strandberg, M.W.P., Hammer, E.I. 1975. Current fluctuation noise in toad urinary bladder during active transport of sodium ions.J. Appl. Phys. 46: 3661

    Google Scholar 

  • Ussing, H.H., Koefoed-Johnson, V. 1956. Nature of the frog skin potential.Abstr. Comm. XX Internat. Physiol. Congr., Brussels, p. 611

  • Van Driessche, W., Borghgraef, R. 1975. Noise generated during ion transport across frog skin.Arch. Int. Physiol. Biochim. 83: 140

    Google Scholar 

  • Wanke, E., DeFelice, L.F., Conti, E. 1974. Voltage noise, current noise and impedance in space clamped squid giant axon.Pfluegers Arch. 347: 63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshiko, T. Power density spectra of frog skin potential, current and admittance functions during patch clamp. J. Membrain Biol. 40 (Suppl 1), 121–134 (1978). https://doi.org/10.1007/BF02026001

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02026001

Keywords

Navigation