Skip to main content
Log in

Use of dynamic mechanical thermal analysis (DMTA)

Glass transitions of a cracker and its dough

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

A Mark III DMTA (Polymer Laboratories, Loughborough, U.K.) was used to measure the glass transition temperatures (T g) of a commercial cracker and its dough, each equilibrated to various water activities covering a range of 0.11–0.75 for the cracker and 0.11–0.90 for the cracker dough. DMTA measures the change in the elastic modulus (E′) and loss modulus (E″), as well as that in tanδ (E″/E′), with temperature. The change in the elastic modulus with temperature for the two systems followed a pattern similar to that found for complex food polymers (gluten, amylopectin), withT g decreasing as moisture content increased. Baking did not change the location of the glass transition curve (T g vs. moisture content); i.e. the curves for raw dough and baked finished product were somewhat superimposable, and similar to the published gluten curve, indicating that for this type of cracker containing ∼5% sugars, the protein fraction is most responsible for theT g curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Levine and L. Slade, Carbohydr. Polym., 6 (1986) 213.

    Google Scholar 

  2. H. Levine and L. Slade, Dough Rheology and Baked Product Texture, eds. H. Faridi and J. M. Faubion, Van Nostrand Reinhold, New York 1990, p. 157.

    Google Scholar 

  3. Y. Roos, Phase Transitions in Foods, Academic Press, New York 1995.

    Google Scholar 

  4. L. H. Sperling, Introduction to Physical Polymer Science, John Wiley & Sons, New York 1986, p. 224.

    Google Scholar 

  5. Y. Roos and M. Karel, Biotechnol. Prog., 6 (1990) 159.

    Google Scholar 

  6. R. C. Hoseney, K. J. Zeleznak and C. S. Lai, Cereal Chem., 63 (1986) 285.

    Google Scholar 

  7. A. M. Cocero and J. L. Kokini, J. Rheol., 35 (1991) 257.

    Google Scholar 

  8. E. M. de Graaf, H. Madeka, A. M. Cocero and J. L. Kokini, Biotechnol. Prog., 9 (1993) 210.

    Google Scholar 

  9. J. L. Kokini, A. M. Cocero, H. Madeka and E. M. de Graaf, Trends Food Sci. Technol., 5 (1994) 281.

    Google Scholar 

  10. M. Le Meste, V. T. Huang, J. Panama, G. Anderson and R. Lentz, Cereal Foods World, 37 (1992) 264.

    Google Scholar 

  11. M. T. Kalichevsky, E. M. Jaroszkiewicz, S. Ablett, J. M. V. Blanshard and P. J. Lillford, Carbohyds. Polym., 18 (1992) 77.

    Google Scholar 

  12. R. E. Wetton and R. D. L. Marsh, Dynamic Mechanical Thermal Analysis (DMTA) of Food Materials, British Society of Rheology, University of Warwick, UK 1989.

    Google Scholar 

  13. M. T. Kalichevsky, E. M. Jaroszkiewicz and J. M. V. Blanshard, Int. J. Biol. Macromol., 14 (1992) 257.

    PubMed  Google Scholar 

  14. E. E. Katz and T. P. Labuza, J. Food Sci., 46 (1981) 403.

    Google Scholar 

  15. L. Greenspan, J. Res. Nat. Bur. Stand., 81A (1977) 1.

    Google Scholar 

  16. K. Nelson and T. P. Labuza, Water Activity Series, Univ. Minnesota, St. Paul, MN 1992.

    Google Scholar 

  17. D. M. R. Georget, R. Parker and A. C. Smith, J. Text. Stud., 26 (1995) 161.

    Google Scholar 

  18. M. Peleg, J. Text. Stud., 25 (1994) 403.

    Google Scholar 

  19. F. Sauvageot and G. Blond, J. Text. Stud., 22 (1991) 423.

    Google Scholar 

  20. L. Chuy and T. P. Labuza, J. Food Sci., 59 (1994) 43.

    Google Scholar 

  21. E. Svensson and A. Eliasson, Carbohydr. Polym., 26 (1995) 171.

    Google Scholar 

  22. P. E. Pritchard and C. J. Brock, J. Sci. Food Agric., 65 (1994) 401.

    Google Scholar 

  23. D. M. R. Georget and A. C. Smith, J. Thermal Anal., in press.

  24. P. de Cock, World Ingred., May June 1 (1995) 19.

    Google Scholar 

  25. Y. Roos and M. Karel, Biotech. Prog., 7 (1991) 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to acknowledge GBB, Herentals Belgium, for support in the purchase of the DMTA and for providing the crackers and dough. This study was supported in part by a grant (#18–72) from the University of Minnesota Agricultural Experiment Station and is presented as paper # 22169.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaidis, A., Labuza, T.P. Use of dynamic mechanical thermal analysis (DMTA). Journal of Thermal Analysis 47, 1315–1328 (1996). https://doi.org/10.1007/BF01992830

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01992830

Keywords

Navigation