Skip to main content
Log in

The development of heat flow calorimetry as a tool for process optimization and process safety

  • Hazards
  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Classical thermo-analytical micro methods (DTA, DSC) are still very useful for process work, but medium scale instruments based on heat flow measurement are attaining an increasingly important role in this domain.

As in many areas, development of reaction calorimetry for industrial applications was driven by needs and by available means (technical capabilities).

The needs have been fairly constant over the past decades. There are data needs:

  • Reaction rates

  • Heat release rates

  • Heat of desired reactions and decompositions

  • Heat capacities and heat transfer capacities

It took the specialists of calorimetry a long time to recognize and to accept the operational needs, namely:

  • Working under controlled temperature conditions (constant temperature, temperature ramps)

  • Adding components during runs (continuously or in portions)

  • Simulation of industrial mixing conditions

The main driving force for the development of process oriented calorimetric instruments was the evolution of electronic hardware which made the control of heat flow on a (non micro) laboratory scale easy.

The paper gives an overview on the principles of heat flow control and reviews the developments of the fifties and sixties, when the matching of heat flow with heat release by reactions was the goal.

With the advent of fast and powerful laptop computers, the focus has shifted. Now, the deduction of true heat release rates from signals which may be badly distorted, is the goal.

Some recent developments are reviewed and the hope is expressed that calorimetric equipment, inexpensive enough to be affordable for every laboratory engaged in process work, will be available soon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Hemminger and G. Höhne, Calorimetry, Verlag Chemie, 1984.

  2. W. Regenass, Thermochim. Acta, 20 (1977) 65.

    Article  CAS  Google Scholar 

  3. S. Igarashi and S. Katayama, Europ. Polymer J., 15 (1979) 805.

    Article  CAS  Google Scholar 

  4. J. K. Gimzewski, Ch. Gerber, E. Meyer and R. R. Schiittier, Chem. Physics Letters, 217 (1994) 594.

    Article  Google Scholar 

  5. M. Tian, Bull. Soc. Chim. France, 33 (1923)427.

    Google Scholar 

  6. E. Calvet and H. Prat, 1956, “Microcalorimétrie”, Masson, Paris.

    Google Scholar 

  7. H. J. Borchard and F. Daniels, J. Am. Chem. Soc., 79 (1957) 41.

    Article  Google Scholar 

  8. H. E. Kissinger, Anal. Chem., 29 (1957) 1702.

    Article  CAS  Google Scholar 

  9. R. N. Rogers and L. C. Smith, Thermochim. Acta, 1 (1970) 1.

    Article  CAS  Google Scholar 

  10. F. Becker and W. Walisch, Z.phys. Chem. N. F., 46 (1965) 279.

    CAS  Google Scholar 

  11. P. Baumgartner and P. Duhaut, Bull. Soc. Chim. France, 1960, 1178.

  12. H. M. Andersen, J. Polym. Sci. A-1, 4 (1966) 783; 7 (1969) 2889.

    Article  CAS  Google Scholar 

  13. W. Köhler, O. Riedel and H. Scherer, Chem. Ing. Techn., 44 (1972) 1216; 45 (1973) 1289.

    Article  Google Scholar 

  14. J. F. Chandler, Duxford (UK), personal communication.

  15. B. Hentschel, Chem. Ing. Techn., MS 725 (1979).

  16. J. Schildknecht, Thermochim. Acta, 49 (1981) 87.

    Article  CAS  Google Scholar 

  17. W. Lite, J. Thermal Anal., 27 (1983) 215.

    Article  Google Scholar 

  18. M. R. Meeks, Polym. Engng. Sci., 9 (1969) 141.

    Article  CAS  Google Scholar 

  19. W. Regenass, Colloquium of the Working Party on Chemical Reaction Engineering (body of EFCE), Pont à Mousson (F), 1966 (first public presentation, no printed proceedings).

  20. W. Regenass, W. Gautschi, H. Martin and M. Brenner, Thermal Analysis, ICTA 1974, Vol. 3, 823.

    Google Scholar 

  21. W. Regenass, ACS Symp. Ser., 65 (1978) 37.

    Article  CAS  Google Scholar 

  22. G. Giger, A. Aichert and W. Regenass, Swiss Chem., 4 (1982)/3a, 33.

    CAS  Google Scholar 

  23. L. Hub, Ph. D. Thesis 5577, ETH Zürich, 1975.

  24. L. Hub, Chem. Ing. Techn., 54 (1982) MS 978/82.

  25. Mettler-Toledo AG, CH 8603 Schwerzenbach.

  26. A. Küssner, Chem. Ing. Techn., 61 (1989) MS 1778/89.

    Google Scholar 

  27. H. Nilsson, C. Silvegren and B. Tornell, Chimia Scripta, 19 (1982) 164.

    CAS  Google Scholar 

  28. O. M. Eigenberger, Development of a laboratory fermenter-calorimeter, in: “Biochemical Engineering”, G. Fischer Ed., Stuttgart 1991, p. 352–356.

  29. T. Stockhausen, J. Prüss and H. U. Moritz, Polymer Reaction Engineering, 127 (1992) 341.

    CAS  Google Scholar 

  30. A. Tietze, A. Pross, K. H. Reichert, Chem. Ing. Techn., 68 (1996) 97.

    Article  CAS  Google Scholar 

  31. F. Becker, Chem. Ing. Techn., 40 (1968) 933.

    Article  CAS  Google Scholar 

  32. W. Regenass, Chimia, 37 (1983) 430.

    CAS  Google Scholar 

  33. W. Regenass, Thermochim. Acta., 95 (1985) 351.

    Article  CAS  Google Scholar 

  34. L. G. Karben and J. Villadsen, Chem. Eng. Sci., 42 (1987) 1153.

    Article  Google Scholar 

  35. H. U. Moritz, in: “Praxis der Sicherheitstechnik” Dechema, Frankfurt 1995, p. 149–173.

  36. J. Steinbach, “Chemische Sicherheitstechnik”, Verlag Chemie, 1995, p. 198–208.

  37. W. Regenass, Chimia, 25 (1971) 154.

    CAS  Google Scholar 

  38. H. Martin, Ph. D. Thesis, U. of Basel, 1975.

  39. W. Gautschi, Ph. D. Thesis, 5652, ETH Zürich, 1976.

    Google Scholar 

  40. W. Kanert, Ph. D. Thesis, U. of Basel, 1977.

  41. M. Bürli, Ph. D. Thesis 6479, ETH Zürich, 1979.

    Google Scholar 

  42. J. Beyrich, Ph. D. Thesis, 6578, ETH Zürich, 1980.

    Google Scholar 

  43. Systag System Technik AG, CH 8803 Rüschlikon.

  44. L. G. Karlsen, H. Sjøberg and J. Villadsen, Thermochim. Acta, 72 (1984) 83.

    Article  CAS  Google Scholar 

  45. L. G. Karlsen, J. Villadsen, Chem. Eng. Sci., 42 (1987) 1165.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In the English literature, the two expressions “heat flux” and “heat flow” are used. As we are generally not interested in flux (=flow per unit area), “heat flow” is preferred here.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regenass, W. The development of heat flow calorimetry as a tool for process optimization and process safety. Journal of Thermal Analysis 49, 1661–1675 (1997). https://doi.org/10.1007/BF01983727

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01983727

Keywords

Navigation