Skip to main content
Log in

PCR-based gene targeting of the inducible nitric oxide synthase (NOS2) locus in murine ES cells, a new and more cost-effective approach

  • Papers
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Gene targeting by double homologous recombination in murine embryonic stem (ES) cells is a powerful tool used to study the cellular consequences of specific genetic mutations. A typical targeting construct consists of a neomycin phosphotransferase (neo) gene flanked by genomic DNA fragments that are homologous to sequences in the target chromosomal locus. Homologous DNA fragments are typically cloned from a murine genomic DNA library. Here we describe an alternative approach whereby the inducible nitric oxide synthase (NOS2) gene locus is partially mapped and homologous DNA sequences obtained using a long-range PCR method. A 7 kb NOS2 amplicon is used to construct a targeting vector where theneo gene is flanked by PCR-derived homologous DNA sequences. The vector also includes a thymidine kinase (tk) negative-selectable marker gene. Following transfection into ES cells, the PCR-based targeting vector undergoes efficient homologous recombination into the NOS2 locus. Thus, PCR-based gene targeting can be a valuable alternative to the conventional cloning approach. It expedites the acquisition of homologous genomic DNA sequences and simplifies the construction of targeting plasmids by making use of defined cloning sites. This approach should result in substantial time and cost savings for appropriate homologous recombination projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adra, C.N., Boer, P.H. and McBurney, M.W. (1987) Cloning and expression of the mouse pgk-1 gene and the nucleotide sequence of its promoter.Gene 60, 65–74.

    Article  PubMed  Google Scholar 

  • Bronson, S.K. and Smithies, O. (1994) Altering mice by homologous recombination using embryonic stem cells.J. Biol. Chem. 269, 27155–8.

    PubMed  Google Scholar 

  • Chartrain, N.A., Geller, D.A., Koty, P.P., Sitrin, N.F., Nussler, A.K., Hoffman, E.P., Billiar, T.R., Hutchinson, N.I. and Mudgett, J.S. (1994) Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene.J. Biol. Chem. 269, 6765–72.

    PubMed  Google Scholar 

  • Chen, P.F., Tsai, A.L. and Wu, K.K. (1994) Cysteine 184 of endothelial nitric oxide synthase is involved in heme coordination and catalytic activity.J. Biol. Chem. 269, 25062–6.

    PubMed  Google Scholar 

  • Cheng, S., Fockler, C., Barnes, W.M. and Higuchi, R. (1994) Effective amplification of long targets from cloned inserts and human genomic DNA.Proc. Natl Acad. Sci. USA 91, 5695–9.

    PubMed  Google Scholar 

  • Chisaka, O. and Capecchi, M.R. (1991) Regionally restricted developmental defects resulting from targeted.Nature 350, 473–9.

    Article  PubMed  Google Scholar 

  • Deng, C. and Capecchi, M.R. (1992) Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus.Mol. Cell. Biol. 12, 3365–71.

    PubMed  Google Scholar 

  • Dinerman, J.L., Lowenstein, C.J. and Snyder, S.H. (1993) Molecular mechanisms of nitric oxide regulation. Potential relevance to cardiovascular disease.Circ. Res. 73, 217–22.

    PubMed  Google Scholar 

  • Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W. and Kemler, R. (1985) Thein vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium.J. Embryol. Exp. Morph. 87, 27–45.

    PubMed  Google Scholar 

  • Geller, D.A., Lowenstein, C.J., Shapiro, R.A., Nussler, A.K., Di Silvio M., Wang, S.C., Nakayama, D.K., Simmons, R.L., Snyder, S.H. and Billiar, T.R. (1993) Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes.Proc. Natl Acad. Sci. USA 90, 3491–5.

    PubMed  Google Scholar 

  • Handyside, A.H., O'Neill, G.T.O., Jones, M. and Hooper, M.L. (1989) Use of BRL-conditioned medium in combination with feeder layers to isolate a diploid embryonal stem cell line.Roux's Arch. Dev. Biol. 198, 48–55.

    Article  Google Scholar 

  • Hasty, P. and Bradley, A. (1993) Gene targeting vectors for mammalian cells. In: Joyner, A.L. ed.,Gene Targeting: a Practical Approach, pp. 1–31. Oxford: IRL Press at Oxford University Press.

    Google Scholar 

  • Hasty, P., Rivera-Perez, J. and Bradley, A. (1991) The length of homology required for gene targeting in embryonic stem cells.Mol. Cell. Biol. 11, 5586–5591.

    PubMed  Google Scholar 

  • Higuchi, R. (1989) Using PCR to engineer DNA. In: Erlich, H.A. ed.,PCR Technology: Principles and Applications for DNA Amplifications, pp. 61–70. New York: Stockton.

    Google Scholar 

  • Kitamura, D., Roes, J., Kuhn, R. and Rajewsky, K. (1991) A B cell-deficient mouse by targeted disruption of the membrane exon.Nature 350, 423–6.

    Article  PubMed  Google Scholar 

  • Kuida, K., Lippke, J.A., Ku, G., Harding, M.W., Livingston, D.J., Su, M.S.S. and Flavell, R.A. (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1-beta converting enzyme.Science 267, 2000–3.

    PubMed  Google Scholar 

  • Lee, K.F., Li, E., Huber, L.J., Landis, S.C., Sharpe, A.H., Chao, M.V. and Jaenisch, R. (1992) Targeted mutation of the gene encoding the low affinity NGF receptor.Cell 69, 737–49.

    Article  PubMed  Google Scholar 

  • Li, E., Bestor, T.H. and Jaenisch, R. (1992) Targeted mutation of the DNA methyltransferase gene results in.Cell 69, 915–26.

    Article  PubMed  Google Scholar 

  • Lowenstein, C.J., Glatt, C.S., Bredt, D.S. and Snyder, S.H. (1992) Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme.Proc. Natl Acad. Sci. USA 89, 6711–5.

    PubMed  Google Scholar 

  • Lueders, K.K. and Fewell, J.W. (1994) Hybridization of DNA in dried gels provides increased sensitivity compared with hybridization to blots.Biotechniques 16, 66–7.

    PubMed  Google Scholar 

  • Lyons, C.R., Orloff, G.J. and Cunningham, J.M. (1992) Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line.J. Biol. Chem. 267, 6370–4.

    PubMed  Google Scholar 

  • Mansour, S.L., Thomas, K.R., Deng, C.X. and Capecchi, M.R. (1990) Introduction of alacZ reporter gene into the mouse int-2 locus by homologous recombination.Proc. Natl Acad. Sci. USA 87, 7688–92.

    PubMed  Google Scholar 

  • Martin, G.R. and Evans, M.J. (1975) The formation of embryoid bodiesin vitro by homogeneous embryonal carcinoma cell cultures derived from irolated single cells. In: Sherman, M.I. and Solter, D. eds.,Teratomas and Differentiation, pp. 169–187. New York: Academic Press.

    Google Scholar 

  • McMahon, A.P. and Bradley, A. (1990) The Wnt-1 (int-1) protooncogene is required for development of a large region of the mouse brain.Cell 62, 1073–85.

    Article  PubMed  Google Scholar 

  • Melton, D.W. (1994) Gene targeting in the mouse.BioEssays 16, 633–38.

    Article  PubMed  Google Scholar 

  • Nathan, C. and Xie, Q.W. (1994a) Regulation of biosynthesis of nitric oxide.J. Biol. Chem. 269, 13725–8.

    PubMed  Google Scholar 

  • Nathan, C. and Xie, Q.W. (1994b) Nitric oxide synthases: roles, tolls, and controls.Cells 78, 915–8.

    Article  Google Scholar 

  • Ochman, H., Ajioka, J.W., Garza, D. and Hartl, D.L. (1989) Inverse polymerase chain reaction. In: Erlich, H.A. ed.,PCR Technology: Principles and Applications for DNA Amplifications, pp. 105–11. New York: Stockton.

    Google Scholar 

  • Ramirez-Solis, R., Davis, A. and Bradley, A. (1993) Gene targeting in embryonic stem cells. In: Wasserman, P.M. and DePamphilis, M.L. eds.,Guide to Techniques in Mouse Development, pp. 855–878. New York: Academic Press.

    Google Scholar 

  • Raschke, W.C., Baird, S., Ralph, P. and Nakoinz, I. (1978) Functional macrophage cell lines transformed by Abelson leukemia virus.Cell 15, 261–7.

    Article  PubMed  Google Scholar 

  • Reaume, A.G., Desousa, P.A., Kulkarni, S., Langille, B.L., Zhu, D.G., Davies, T.C., Juneja, S.C., Kidder, G.M. and Rossant, J. (1995) Cardiac malformation in neonatal mice lacking connexin43.Science 267, 1831–4.

    PubMed  Google Scholar 

  • Riele, H. te., Maandag, E.R. and Berns, A. (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs.Proc. Natl Acad. Sci. USA 89, 5128–32.

    PubMed  Google Scholar 

  • Robbins, J. (1993) Gene targeting. The precise manipulation of the mammalian genome.Circ. Res. 73, 3–9.

    PubMed  Google Scholar 

  • Routtenberg, A. (1995) Knockout mouse fault lines.Nature 374, 314–5.

    Article  PubMed  Google Scholar 

  • Sanger, F., Nicklen, S. and Coulson, A.R. (1977) DNA seuquencing with chain-terminating inhibitors.Proc. Natl Acad. Sci. USA 74, 5463–7.

    PubMed  Google Scholar 

  • Scharf, S.J., Horn, G.T. and Erlich, H.A. (1986) Direct cloning and sequence analysis of enzymatically amplified genomic sequences.Science 233, 1076–8.

    PubMed  Google Scholar 

  • Shastry, B.S. (1994) More to learn from gene knockouts.Mol. Cell. Biochem. 136, 171–82.

    Article  PubMed  Google Scholar 

  • Soriano, P. (1995) Gene targeting in ES cells.Annu. Rev. Neurosci. 18, 1–18.

    Article  PubMed  Google Scholar 

  • Soriano, P., Montgomery, C., Geske, R. and Bradley, A. (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice.Cell 64, 693–702.

    Article  PubMed  Google Scholar 

  • Southern, E.M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol. 98, 503–17.

    PubMed  Google Scholar 

  • Tarakhovsky, A., Muller, W. and Rajewsky, K. (1994) Lymphocyte populations and immune responses in CD5-deficient mice.Eur. J. Immunol. 24, 1678–84.

    PubMed  Google Scholar 

  • Thomas, K.R. and Capecchi, M.R. (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells.Cell 51, 503–12.

    Article  PubMed  Google Scholar 

  • Tsao, S.G., Brunk, C.F. and Pearlman, R.E. (1983) Hybridization of nucleic acids directly in agarose gels.Anal. Biochem. 131, 365–72.

    Article  PubMed  Google Scholar 

  • Tybulewicz, V.L., Crawford, C.E., Jackson, P.K., Bronson, R.T. and Mulligan, R.C. (1991) Neonatal lethality and lymphopenia in mice with a homozygous disruption of thec-abl protooncogene.Cell 65, 1153–63.

    Article  PubMed  Google Scholar 

  • Uvarov, V.Y. and Lyashenko, A.A. (1995) The identification of the pterin-binding domain in the nitric oxide synthase's sequence.Biochem. Biophys. Res. Commun. 206, 736–41.

    Article  PubMed  Google Scholar 

  • Xie Q.W., Cho, H.J., Calaycay, J., Mumford, R.A., Swiderek, K.M., Lee, T.D., Ding, A., Troso, T. and Nathan, C. (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages.Science 256, 225–8.

    PubMed  Google Scholar 

  • Xie, Q.W., Cho, H., Kashiwabara, Y., Baum, M., Weidner, J.R., Elliston, K., Mumford, R. and Nathan, C. (1994) Carboxyl terminus of inducible nitric oxide synthase. Contribution to NADPH binding and enzymatic activity.J. Biol. Chem. 269, 28500–5.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randolph, D.A., Verbsky, J.W., Yang, L. et al. PCR-based gene targeting of the inducible nitric oxide synthase (NOS2) locus in murine ES cells, a new and more cost-effective approach. Transgenic Research 5, 413–420 (1996). https://doi.org/10.1007/BF01980206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01980206

Keywords

Navigation