Skip to main content
Log in

Acquisition of nutrients from organic resources by mycorrhizal autotrophic plants

  • Multi-Author Review
  • Structure, Function and Ecology of the Mycorrhizal Symbiosis
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Evidence exists to suggest that mycorrhizal fungi are capable of producing enzymes allowing them to access carbon, nitrogen and phosphorus from complex organic resources in soil. This facility is mainly demonstrated in ectomycorrhizal and ericaceous endomycorrhizal fungi associated with highly organic soils and climatically stressed environments. These data support a direct nutrient cycling hypothesis proposed for tropical ectomycorrhizal forests. In terms of forest succession, the evidence agrees with a major contribution of the mycorrhizal symbiosis in late stages of the succession, where elemental cycling becomes increasingly more conservative and process rates limited by biotic factors. Here, tree growth benefits from direct nutrient cycling mediated by their mycorrhizal symbionts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abuzinadah, R. A., Finlay, R. D., and Read, D. J., The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. II. Utilization of protein by mycorrhizal plants ofPinus contorta. New Phytol.103 (1986) 495–506.

    Google Scholar 

  2. Abuzinadah, R. A., and Read, D. J., The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol.103 (1986) 481–493.

    Google Scholar 

  3. Alexander, I. J., and Hardy, K., Surface phosphatase activity of Sitka spruce mycorrhizas from a Serpentine soil. Soil Biol. Biochem.13 (1981) 301–305.

    Google Scholar 

  4. Anderson, G., The identification and estimation of soil inositol phosphates. J. Sci. Fd Agric.7 (1956) 437–444.

    Google Scholar 

  5. Antibus, R. K., Croxdale, J. G., Miller, O. K., and Linkins, A. E., Ectomycorrhizal fungi onSalix rotundifolia. III. Resynthesized mycorrhizal complexes and their surface phosphatase activities. Can. J. Bot.59 (1981) 2458–2465.

    Google Scholar 

  6. Antibus, R. K., Kroehler, C. J., and Linkins, A. E., The effects of external pH, temperature and substrate concentration on acid phosphatase activity of ectomycorrhizal fungi. Can. J. Bot.64 (1986) 2383–2387.

    Google Scholar 

  7. Azcon, R., Borie, F., and Barea, J. M., Exocellular acid phosphatase activity of avender and wheat roots as affected by phytase and mycorrhizal inoculation, in: Les Mycorhizes: Biologie et Utilization. Les Colloques de l'INRA, vol. 13, pp. 83–85. Eds S. Gianinazzi, V. Gianinazzi-Pearson and A. Trouvelot. INRA, Paris 1982.

    Google Scholar 

  8. Barrow, N. J., Malajczuk, N., and Shaw, T. C., A direct test of the ability of vesicular-arbuscular mycorrhiza to help plants take up fixed soil phosphate. New Phytol.78 (1977) 269–276.

    Google Scholar 

  9. Bartlett, E. M., and Lewis, D. H., Surface phosphatase activity of mycorrhizal roots of beech. Soil Biol. Biochem.5 (1973) 249–257.

    Google Scholar 

  10. Berg, B., and Lindberg, T., Is litter decomposition retarded in the presence of mycorrhizal roots in forest soils? Swedish Coniferous Forest Project Internal Report95 (1980) 10.

    Google Scholar 

  11. Bousquet, N., Mousin, D., and Salsac, L., Use of phytate by ectomycorrhizal fungi, in: Mycorrhizae: Physiology and Genetics, pp. 363–368. Eds V. Gianinazzi-Pearson and S. Gianinazzi. Proc 1st Eur. Symposium on Mycorrhizae, Dijon. INRA, Paris 1986.

    Google Scholar 

  12. Calleja, M., and D'Auzac, J., Carence phosphatée et phosphatases: comparaison de champignons mycorhiziens et saprophytes, in: Les Mycorhizes: Biologie et Utilization. Les Colloques de l'INRA No. 13, pp. 107–112. Eds S. Gianinazzi, V. Gianinazzi-Pearson and A. Trouvelot. INRA, Paris 1982.

    Google Scholar 

  13. Calleja, M., Mousin, D., Lecouvreur, B., and D'Auzac, J., Influence de la carence phosphatée sur les activites phosphatases acides de trois champignons mycorhiziens:Hebeloma edirum Metrod.,Suillus granulatus (L. Ex Fr.) O. Kuntze etPisolithus tinctorius (Pers.) Coker et Crouch. Physiol. veg.18 (1980) 489–504.

    Google Scholar 

  14. Chu-Chou, M., Mycorrhizal fungi ofPinus radiata in New Zealand. Soil Biol. Biochem.11 (1979) 557–562.

    Google Scholar 

  15. Chu-Chou, M., and Grace, L. J., Mycorrhizal fungi ofPseudotsuga menziesii in the north island of New Zealand. Soil Biol. Biochem.13 (1981) 247–249.

    Google Scholar 

  16. Coupe, M., Doumas, P., and D'Auzac, J., Influence des phosphatases dans la nutrition des champignons et des plantes supérieures: aspects biochemiques, in: Les Mycorhizes: Biologie et Utilizations. Les Colloques de l'INRA No. 13, pp. 113–128. Eds S. Gianinazzi, V. Gianinazzi-Pearson and A. Trouvelot. INRA, Paris 1982.

    Google Scholar 

  17. Dighton, J., Phosphatase production by mycorrhizal fungi. Plant Soil71 (1983) 455–462.

    Google Scholar 

  18. Dighton, J., Ecology and management of ectomycorrhizal fungi in the UK., in: Mycorrhizae in the Next Decade: Practical Applications and Research Priorities. Proc. 7th North American Conference on Mycorrhizae, pp. 75–77. Eds D. M. Sylvia, L. L. Hung and J. H. Graham. University of Florida, 1988.

  19. Dighton, J., and Boddy, L., Role of fungi in nitrogen phosphorus and sulphur cycling in temperate forest ecosystems, in: Nitrogen, Phosphorus and Sulphur Utilization by Fungi, p. 269–298. Eds L. Boddy, R. Marchant and D. J. Read. Cambridge University Press, 1989.

  20. Dighton, J., and Harrison, A. F., Changes in phosphate status of Sitka spruce plantations of increasing age, as determined by a rootbioassay. For. Ecol. Manag.31 (1990) 44–55.

    Google Scholar 

  21. Dighton, J., and Mason, P. A., Mycorrhizal dynamics during forest tree development, in: Developmental Biology of Higher Fungi, pp. 117–139. Eds D. Moore, L. A. Casselton, D. A. Wood and J. C. Frankland. Cambridge University Press, 1985.

  22. Dighton, J., Poskitt, J. M., and Howard, D. M., Changes in occurrence of basidiomycete fruit bodies during forest stand development: with specific reference to mycorrhizal species. Trans. Br. mycol. Soc.87 (1986) 163–171.

    Google Scholar 

  23. Dighton, J., Thomas, E. D., and Latter, P. M., Interactions between tree roots, mycorrhizas, a saprotrophic fungus and the decomposition of organic substrates in a microcosm. Biol. Fert. Soils4 (1987) 145–150.

    Google Scholar 

  24. Dodd, J. C., Burton, C. C., Burns, R. G., and Jeffries, P., Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol.107 (1987) 163–172.

    Google Scholar 

  25. Dracup, M. N. H., Barrett-Lennard, E. G., Greenway, H., and Robson, A. D., Effect of phosphorus deficiency on phosphatase activity of cell walls from roots of subterranean clover. J. exp. Bot.35 (1984) 466–480.

    Google Scholar 

  26. Fife, D. N., and Nambiar, E. K. S., Accumulation and retranslocation of mineral nutrients in developing needles in relation to seasonal growth of young radiata pine trees. Ann. Bot.50 (1982) 617–829.

    Google Scholar 

  27. Gadgil, R. L., and Gadgil, P. D., Mycorrhiza and litter decomposition. Nature233 (1971) 133.

    Google Scholar 

  28. Gadgil, R. L., and Gadgil, P. D., Suppression of litter decomposition by mycorrhizal roots ofPinus radiata. N.Z. J. For. Sci.5 (1975) 33–41.

    Google Scholar 

  29. Giltrap, N. J., Production of polyphenol oxidases by ectomycorrhizal fungi with special reference toLactarius spp. Trans. Br. mycol. Soc.78 (1982) 75–81.

    Google Scholar 

  30. Grime, J.P., Plant Strategies and Vegetation Processes. Wiley, Chichester and New York 1979.

    Google Scholar 

  31. Haussling, M., and Marschner, H., Organic and inorganic soil phosphates and acid phosphatase activity in the rhizosphere of 80-year-old Norway spruce (Picea abies (L.) Karst.) trees. Biol. Fert. Soils8 (1989) 128–133.

    Google Scholar 

  32. Heal, O. W., and Dighton, J.: Resource quality and trophic structure in the soil system, in: Ecological Interactions in Soil, pp. 339–354. Eds A. H. Fitter, D. Atkinson, D. J. Read and M. B. Usher. Blackwell, Oxford 1985.

    Google Scholar 

  33. Heal, O. W., and Dighton, J., Nutrient cycling and decomposition in natural terrestrial ecosystems, in: Soil Microflora-Microfauna Interactions in Natural and Agro-ecosystems, pp. 14–73. Eds M. J. Mitchell and J. P. Nakas. Martinus Nijhoff/W. Junk, Dordrecht 1986.

    Google Scholar 

  34. Herrera, R., Merida, T., Stark, N., and Jordan, C. F., Direct phosphorus transfer from leaf litter to roots. Naturwissenschaften65 (1978) 208–209.

    Google Scholar 

  35. Ho, I., Enzyme activity and phytohormone production of a mycorrhizal fungus,Laccaria laccata. Can. J. For. Res.17 (1987) 855–858.

    Google Scholar 

  36. Ho, I., and Zak, B., Acid phosphatase activity of six ectomycorrhizal fungi. Can. J. Bot.57 (1979) 1203–1205.

    Google Scholar 

  37. Janos, D. P., Mycorrhizae influence tropical succession. Biotropica12 (1980) 56–64.

    Google Scholar 

  38. Janos, D. P., Tropical mycorrhizas, nutrient cycles and plant growth, in: Tropical Rain Forest: Ecology and Management, pp. 327–345. Eds S. L. Sutton, T. C. Whitmore and A. C. Chadwick. Blackwell, Oxford 1983.

    Google Scholar 

  39. Kroehler, C. J., Antibus, R. K., and Linkins, A. E., The effects of organic and inorganic phosphorus concentration on the acid phosphatase activity of ectomycorrhizal fungi. Can. J. Bot.66 (1988) 750–756.

    Google Scholar 

  40. Kroehler, C. J., and Linkins, A. E., The root surface phosphatases ofEriophorum vaginatum: Effects of temperature, pH, substrate concentration and inorganic phosphorus. Plant Soil105 (1988) 3–10.

    Google Scholar 

  41. Lacaze, B., Localisation cytochimique des activités phosphatasiques acides de champignons mycorhiziens dévelope sur milieu complet ou carence en phosphate. Can. J. Bot.61 (1983) 1411–1414.

    Google Scholar 

  42. Laheurte, F., and Berthelin, J., Interactions between endomycorrhizas and phosphate solubilizing bacteria: effects on nutrition and growth of maize, in: Mycorrhizae: Physiology and Genetics, pp. 339–343. Eds V. Gianinazzi-Pearson and S. Gianinazzi. INRA, Paris 1986.

    Google Scholar 

  43. Laheurte, F., and Berthelin, J., Effect of a phosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus. Plant Soil105 (1988) 11–17.

    Google Scholar 

  44. Laiho, O.,Paxillus involutus as a mycorrhizal symbiont of forest trees. Acta for. fenn.106 (1970).

  45. Last, F. T., Dighton, J., and Mason, P. A., Successions of sheathing mycorrhizal fungi. Trends Ecol. Evol.2 (1987) 157–161.

    Google Scholar 

  46. Leyval, C., and Berthelin, J., Comparison between the utilization of phosphorus from insoluble mineral phosphates by ectomycorrhizal fungi and rhizobacteria, in: Mycorrhizae: Physiology and Genetics, pp. 345–349. Eds V. Gianinazzi-Pearson and S. Gianinazzi, INRA, Paris 1986.

    Google Scholar 

  47. Lindeberg, G., On the occurrence of polyphenol oxidases in soil-inhabiting basidiomycetes. Physiol. Plant.1 (1948) 196–205.

    Google Scholar 

  48. Lindeberg, G., Roles of litter-decomposing and ectomycorrhizal fungi in nitrogen cycling in the Scandinavian coniferous forest ecosystem, in: The Fungal Community, pp. 653–664. Eds D. T. Wicklow and G. C. Carroll. Marcel Dekker, New York 1981.

    Google Scholar 

  49. Linkins, A. E., and Antibus, R. K., Mycorrhizae ofSalix rotundifolia in coastal arctic tundra, in: Arctic and Alpine Mycology, pp. 509–531. Eds G. A. Laursen and J. F. Ammirati. University of Washington Press, Washington 1981.

    Google Scholar 

  50. Lundeberg, G., Utilization of various nitrogen sources, in particular bound nitrogen, by mycorrhizal fungi. Stuida for Suec.79 (1970) 1–95.

    Google Scholar 

  51. MacArthur, R. H., and Wilson, E. D., The Theory of Island Biogeography. Princeton University Press, Princeton 1967.

    Google Scholar 

  52. MacDonald, R. M., and Lewis, M., The occurrence of some acid phosphatases and dehydrogenases in the vesicular-arbuscular mycorrhizal fungusGlomus mosseae. New Phytol.80 (1978) 135–141.

    Google Scholar 

  53. Mason, P. A., Last, F. T., Pelham, J., and Ingleby, K., Ecology of some fungi associated with an ageing stand of birches (Betula pendula andBetula pubescens). For. Ecol. Manag.4 (1982) 19–37.

    Google Scholar 

  54. Mason, P. A., Wilson, L., Last, F. T., and Walker, C., The concept of succession in relation to the spread of sheathing mycorrhizal fungi on inoculated tree seedlings growing in unsterile soil. Plant Soil71 (1983) 247–256.

    Google Scholar 

  55. Mejstrik, V. K., and Krause, H. H., Uptake of32P byPinus radiata roots inoculated withSuillus luteus andCenococcum graniforme from different sources of available phosphate. New Phytol.72 (1973) 137–140.

    Google Scholar 

  56. Miller, H. G., Dynamics of nutrient cycling in plantation ecosystems, in: Nutrition of Planation Forests, pp. 53–78. Eds G. D. Bowen and E. K. S. Nambiar. Academic Press, London 1984.

    Google Scholar 

  57. Mitchell, D. T., and Read, D. J., Utilization of inorganic and organic phosphates by the mycorrhizal endophytes ofVaccinium macrocarpon andRhododendron ponticum. Trans Br. mycol. Soc.76 (1981) 255–260.

    Google Scholar 

  58. Mousin, D., Bousquet, N., and Polard, C., Comparaison des activités phosphatases d'Homobasidiomycetes ectomycorrhiziens en culture in vitro. Eur. J. For. Path.18 (1988) 299–309.

    Google Scholar 

  59. Mousin, D., and Salsac, L., Nutrition phosphates et activités phosphatases acides des symbiontes ectomycorhiziens cultivés isolement on en association, in: Les Mycorhizes: Biologie et Utilization. Les Colloques de l'INRA No. 13, pp. 87–100. Eds S. Gianinazzi, V. Gianinazzi-Pearson and A. Trouvelot. INRA, Paris 1982.

    Google Scholar 

  60. Murdoch, C. L., Jakobs, J. A., and Gerdemann, J. W., Utilization of phosphorus sources of different availability by mycorrhizal and nonmycorrhizal maize. Plant Soil27 (1967) 329–334.

    Google Scholar 

  61. Oelbe, M., Untersuchungen über einige kohlenhydratabbauende Enzyme des MykorrhizapilzesTricholoma aurantium. PhD Thesis. Georg-August University, Göttingen 1982.

    Google Scholar 

  62. Pearson, V., and Read, D. J., The physiology of the mycorrhizal endophyte ofCalluna vulgaris. Trans. Br. mycol. Soc.64 (1975) 1–7.

    Google Scholar 

  63. Read, D. J., The structure and function of the vegetative mycelium of mycorrhizal roots, in: The Ecology and Physiology of the Fungal Mycelium, pp. 215–240. Eds D. H. Jennings and A. D. M. Rayner. Cambridge University Press, 1984.

  64. Saxena, S. N., Phytase activity of plant roots. J. exp. Bot.15 (1964) 654–658.

    Google Scholar 

  65. Singer, R., and Araujo, I. de J. da S., Litter decomposition and ectomycorrhiza in Amazonian forests. 1. A comparison of litter decomposing and ectomycorrhizal basidiomycetes in latosol-terra-firme rain forest and white podzol campinarana. Acta amazonica9 (1979) 25–41.

    Google Scholar 

  66. Straker, C. J., and Mitchell, D. T., The activity and characterization of acid phosphatases in endomycorrhizal fungi of the Ericaceae. New Phytol.104 (1985) 243–256.

    Google Scholar 

  67. Stribley, D. P., and Read, D. J., The biology of mycorrhiza in the Ericaceae. VII. The relationship between mycorrhizal infection and the capacity to utilize simple and complex organic nitrogen sources. New Phytol86 (1980) 365–371.

    Google Scholar 

  68. Swift, M. J., Species diversity and the structure of microbial communities, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes, pp. 185–222. Eds J. M. Anderson and A. Macfadyen. Blackwell, Oxford 1976.

    Google Scholar 

  69. Theodorou, C., Inositol phosphates in needles ofPinus radiata D. Don and the phytase activity of mycorrhizal fungi. Proc. 9th Int. Cong. Soil Science, Adelaide,3, (1968) 480–490.

    Google Scholar 

  70. Theodorou, C., The phytase activity of the mycorrhizal fungusRhizopogon luteus. Soil Biol. Biochem.3 (1971) 89–90.

    Google Scholar 

  71. Thomas, G. W., Clarke, C. A., Mosse, B., and Jackson, R. M., Source of phosphate taken up from two soils by mycorrhizal (Thelephora terestris) and non-mycorrhizalPicea sitchensis seedlings. Soil. Biol. Biochem.14 (1982) 73–75.

    Google Scholar 

  72. Todd, A. W., Decomposition of selected soil organic matter components by Douglas-fir ectomycorrhizal associations. Program & Abstracts, 4th NACOM Colorado State Univ., Fort Collins 1979.

  73. Trappe, J. M., and Fogel, R. D., Ecosystematic functions of mycorrhizae, in: The Belowground Ecosystem: A Synthesis of Plant-Associated Proceesses, pp. 205–213. Ed. J. K. Marshall. Range Soil Dept. Science Series No. 26. Colorado State Univ. 1977.

  74. Trojanowski, J., Haider, K., and Hütterman, A., Decomposition of14C-labelled lignin, holocellulose and lignocellulose by mycorrhizal fungi. Arch. Microbiol.134 (1984) 202–206.

    Google Scholar 

  75. Turner, J., and Lambert, M. J., Nutrition and nutritional relationships ofPinus radiata. A. Rev. Ecol. Syst.17 (1986) 325–350.

    Google Scholar 

  76. Turner, J., and Lambert, M. J., Long-term effects of phosphorus fertilization on forests, in: Forest Environment and Silviculture. Proc. 18th IUFRO World Congress, pp. 507–519. Ed. R. Herman. IUFRO, 1986.

  77. Tyler, G., Macro-fungal flora of Swedish beech forest related to soil organic matter and acidity characteristics. For. Ecol. Manag.10 (1985) 13–29.

    Google Scholar 

  78. Vitousek, P. M., and Reiners, W. A., Ecosystem succession and nutrient retention: a hypothesis. Bioscience25 (1975) 376–381.

    Google Scholar 

  79. Went, F. W., and Stark, N., The biological and mechanical role of soil fungi. Proc. natl. Acad. Sci.60 (1968) 497–504.

    Google Scholar 

  80. Williamson, B., and Alexander, I. J., Acid phosphatase localized in the sheath of beech mycorrhiza. Soil Biol. Biochem.7 (1975) 195–198.

    Google Scholar 

  81. Woolhouse, H. W., Differences in the properties of the acid phosphatases of plant roots and their significance in the evolution of edaphic ecotypes, in: Ecological Aspects of the Mineral Nutrition of Plants, pp. 357–380. Ed. I. H. Rorison. Blackwell, Oxford 1969.

    Google Scholar 

  82. Zhu, H., Higginbotham, R. O., Dancik, B. P., and Navratil, S., Intraspectific genetic variability of isoenzymes in the ectomycorrhizal fungusSuillus tomentosus. Can. J. Bot.66 (1988) 588–594.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dighton, J. Acquisition of nutrients from organic resources by mycorrhizal autotrophic plants. Experientia 47, 362–369 (1991). https://doi.org/10.1007/BF01972078

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01972078

Key words

Navigation