Skip to main content
Log in

Biogenesis of mitochondria 20 the effects of altered membrane lipid composition on mitochondrial oxidative phosphorylation inSaccharomyces cerevisiae

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

  1. 1.

    The lipid composition of mitochondria isolated from a fatty acid desaturase mutant ofSaccharomyces cerevisiae may be extensively manipulated by growing the organism on defined supplements of unsaturated fatty acid (UFA).

  2. 2.

    The fatty acid composition of the mitochondrial lipids closely follows that of the whole cells from which the mitochondria are isolated. UFA-depleted mitochondria contain normal levels of sterols, neutral lipids and total phospholipids, but have much lower levels of phosphatidyl inositides.

  3. 3.

    UFA-depleted mitochondria possess a full complement of cytochromes, oxidase both NAD-linked and flavoprotein-linked substrates at normal rates, and have levels of succinate and malate dehydrogenases similar to those of UFA-supplemented mitochondria. However, UFA-depletion has a marked effect on the ability of cytochromec to reactivate the NADH oxidase activity of cytochromec-depleted mitochondria.

  4. 4.

    The efficiency of oxidative phosphorylation decreases progressively with the UFA content of the mitochondria, and oxidative phosphorylation is completely lost in mitochondria containing approximately 20% UFA.

  5. 5.

    The incorporation of UFA into the lipids of UFA-depleted mitochondriain vivo results in a recoupling of oxidative phosphorylation. Recoupling is insensitive to both chloramphenicol and cycloheximide, indicating that all the proteins necessary for oxidative phosphorylation are present in UFA-depleted mitochondria, and that the less of oxidative phosphorylation is a purely lipid lesion.

  6. 6.

    ATPase activity is apparently unaffected by UFA-depletion, but32Pi-ATP exchange activity is lost in mitochondria which have been extensively depleted in UFA.

  7. 7.

    Valinomycin stimulates the respiration of UFA-supplemented mitochondria in media containing potassium, but has no effect on the respiration of UFA-depleted mitochondria, suggesting that active transport of potassium is lost as a result of UFA-depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. W. Proudlock, J. M. Haslam and A. W. Linnane,J. Bioenergetics,2 (1971) 327.

    Google Scholar 

  2. J. W. Proudlock, J. M. Haslam and A. W. Linnane,Biochem. Biophys. Res. Commun. 37 (1969) 847.

    PubMed  Google Scholar 

  3. A. J. Lamb, G. D. Clark-Walker and A. W. Linnane,Biochim. Biophys. Acta,161 (1968) 415.

    PubMed  Google Scholar 

  4. K. Watson, J. M. Haslam, B. Veitch and A. W. Linnane, in:Autonomy and Biogenesis of Mitchondria and Chloroplasts, N. K. Boardman, A. W. Linnane and R. M. Smillie (eds.), North Holland Publishing Co., Amsterdam, 1971, p. 162.

    Google Scholar 

  5. J. M. Haslam,Biochim. Biophys. Acta,105 (1965) 184.

    PubMed  Google Scholar 

  6. G. Gomori,J. Lab. Clin. Med.,27 (1942) 955.

    Google Scholar 

  7. L. Kovac, H. Bednarova and M. Greksak,Biochim. Biophys. Acta,153 (1968) 32.

    Google Scholar 

  8. G. Schatz,J. Biol. Chem.,243 (1968) 2192.

    PubMed  Google Scholar 

  9. M. Somlo,Europ. J. Biochem.,5 (1968) 276.

    PubMed  Google Scholar 

  10. G. C. Monroy and M. E. Pullman, in:Methods in Enzymology, R. W. Estabrook and M. E. Pullman (eds.), Academic Press, New York,10 (1967) 510.

    Google Scholar 

  11. O. Arrigoni and T. P. Singer,Nature,193 (1962) 1256.

    PubMed  Google Scholar 

  12. M. J. Vary, C. L. Edwards, and P. R. Stewart,Arch. Biochem. Biophys.,130 (1969) 235.

    PubMed  Google Scholar 

  13. M. E. Pullman, in:Methods in Enzymology, R. W. Estabrook and M. E. Pullman (eds.), Academic Press, New York,10 (1967) 57.

    Google Scholar 

  14. C-P., Lee, G. F. Azzone and L. Ernster,Nature,201 (1964) 152.

    PubMed  Google Scholar 

  15. E. Carafoli and A. L. Lehninger, in:Methods in Enzymology, R. E. Estabrook and M. E. Pullman (eds.), Academic Press, New York,10 (1967) 745.

    Google Scholar 

  16. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall,J. Biol. Chem.,193 (1952) 1265.

    Google Scholar 

  17. B. Chance, in:Methods in Enzymology, S. P. Colowick and N. O. Kaplan (eds.), Academic Press, New York,4 (1957) 273.

    Google Scholar 

  18. V. M. Clark and A. J. Kirby,Biochem. Prep.,11 (1966) 101.

    Google Scholar 

  19. E. A. Duell, S. Inoue and M. Utter,J. Bacteriol.,88 (1964) 1762.

    PubMed  Google Scholar 

  20. T. Ohnishi, K. Kawaguchi and B. Hagihara,J. Biol. Chem.,241 (1966) 1797.

    PubMed  Google Scholar 

  21. D. E. Green and S. Fleischer,Biochim. Biophys. Acta,79 (1963) 554.

    Google Scholar 

  22. M. L. Das, H. Hiratsuka, J. M. Machinist and F. L. Crane,Biochim. Biophys. Acta,60 (1963) 433.

    Google Scholar 

  23. M. L. Das, D. E. Myers and F. L. Crane,Biochim. Biophys. Acta,84 (1964) 618.

    PubMed  Google Scholar 

  24. E. Vitols and A. W. Linnane,J. Biophys. Biochem. Cytol.,9 (1961) 701.

    PubMed  Google Scholar 

  25. G. Schatz and E. Racker,Biochem. Biophys. Res. Commun.,22 (1966) 579.

    PubMed  Google Scholar 

  26. J. C. Beck, J. R. Mattoon, D. C. Hawthorne and F. Sherman,Proc. Natl. Acad. Sci., U.S.,60 (1968) 186.

    Google Scholar 

  27. E. Racker,Mechanisms in Bioenergetics, Academic Press, New York, 1965.

    Google Scholar 

  28. G. Schatz, in:Methods in Enzymology, R. W. Estabrook and M. E. Pullman (eds.), Academic Press, New York,10 (1967) 197.

    Google Scholar 

  29. E. Carafoli, W. X. Balcavage, A. L. Lehninger and J. R. Mattoon,Biochim. Biophys. Acta,205 (1970) 18.

    PubMed  Google Scholar 

  30. P. M. Vignais, P. V. Vignais and A. L. Lehninger,J. Biol. Chem.,239 (1964) 2011.

    PubMed  Google Scholar 

  31. P. V. Vignais, P. M. Vignais and A. L. Lehninger,J. Biol. Chem.,239 (1964) 2002.

    PubMed  Google Scholar 

  32. P. V. Vignais and P. M. Vignais, in:Regulation of Metabolic Processes in Mitochondria, J. M. Tager, S. Papa, E. Quagliariello and E. C. Slater (eds.), Elsevier, Amsterdam, 1966, p. 368.

    Google Scholar 

  33. R. D. Hill, S. Ford, K. H. Byington, A. Tzagaloff and P. D. Boyer,Arch. Biochem. Biophys.,627 (1968) 756.

    Google Scholar 

  34. D. Parsons, G. Williams, W. Thompson, D. Wilson and B. Chance in:Mitochondrial Structure and Compartmentation, E. Quagliariello, A. Papa, E. C. Slater and J. M. Tager (eds.), Adriatica Editrice, Bari, 1967, p. 29.

    Google Scholar 

  35. W. Stoffel and H. G. Schiefer,Hoppe-Seylers Z. Physiol. Chemie,349 (1968) 1017.

    Google Scholar 

  36. G. G. de Pury and F. D. Collins,Chem. Phys. Lipids,1 (1966) 1.

    Google Scholar 

  37. G. G. de Pury and F. D. Collins,Chem. Phys. Lipids,1 (1966) 20.

    Google Scholar 

  38. I. Sekuzu, P. Jurtshuk and D. E. Green,Biochem. Biophys. Res. Commun.,6 (1961) 71. 25

    PubMed  Google Scholar 

  39. I. Sekuzu, P. Jurtshuk and P. E. Green,J. Biol. Chem.,238 (1963) 975.

    PubMed  Google Scholar 

  40. P. Jurtshuk, I. Sekuzu and D. E. Green,Biochem. Biophys. Res. Commun.,6 (1961) 76.

    PubMed  Google Scholar 

  41. P. Jurtshuk, I. Sekuzu and D. E. Green,J. Biol. Chem.,238 (1963) 3595.

    PubMed  Google Scholar 

  42. P. D. Klein and R. N. Johnson,J. Biol. Chem.,211 (1954) 103.

    PubMed  Google Scholar 

  43. E. Levin, R. N. Johnson and S. Albert,J. Biol. Chem.,228 (1957) 15.

    PubMed  Google Scholar 

  44. T. Ito and R. N. JohnsonJ. Biol. Chem.,239 (1964) 3201.

    PubMed  Google Scholar 

  45. L. A. Biran, W. Bartley, C. W. Carter and A. Renshaw,Biochem. J.,94 (1965) 247.

    PubMed  Google Scholar 

  46. Y. Kagawa, T. Takaoka and H. Katsuta,J. Biochem.,65 (1969) 799.

    PubMed  Google Scholar 

  47. R. C. Stancliff, M. A. Williams, K. Utsumi and C. Parker,Arch. Biochem. Biophys.,141 (1969) 629.

    Google Scholar 

  48. H. G. Schiefer,Hoppe-Seylers Z. Physiol. Chemie,350 (1969) 235.

    Google Scholar 

  49. G. L. Scherphof and L. L. N. van Deenan,Biochim. Biophys. Acta,113 (1966) 417.

    PubMed  Google Scholar 

  50. L. L. N. van Deenan, H. van den Bosch, L. M. V. van Golde, G. L. Scherphof and B. M. Waite, in:Cellular Compartmentalisation and Control of Fatty Acid Metabolism, F. C. Gran (ed.), Universitetforlaget, Oslo, 1968, p. 89.

    Google Scholar 

  51. P. Mitchell,Biol. Rev., Cambridge,41 (1966) 455.

    Google Scholar 

  52. D. E. Green, J. Asai, R. A. Harris and J. T. Penniston,Arch. Biochem. Biophys.,125 (1968) 684.

    PubMed  Google Scholar 

  53. J. T. Penniston, R. A. Harris, J. Asai and D. E. Green,Proc. Natl. Acad. Sci., U.S.,59 (1968) 624.

    Google Scholar 

  54. E. C. Slater, in:Comprehensive Biochemistry, M. Florkin and E. H. Stotz (eds.), Elsevier, Amsterdam,14 (1967) 327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haslam, J.M., Proudlock, J.W. & Linnane, A.W. Biogenesis of mitochondria 20 the effects of altered membrane lipid composition on mitochondrial oxidative phosphorylation inSaccharomyces cerevisiae . J Bioenerg Biomembr 2, 351–370 (1971). https://doi.org/10.1007/BF01963830

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01963830

Keywords

Navigation