Skip to main content
Log in

Germ line — soma differentiation inAscaris: A molecular approach

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The early ontogenetic segregation of germ line and somatic cells in the animal kingdom is phylogenetically very old and represents probably the first step in differentiation. While this phenomenon has been shown to occur in various animal phyla, it seems to be completely msssing in the plant kingdom. In several animal species, the segregation of the germ and somatic cell lines is accompanied by the loss of whole or parts of chromosomes in the presumptive somatic cells. The cause of the chromatin diminution process as well as the significance of the germ line limited DNA sequences in species undergoing chromatin or chromosome loss still remain unknown. However, using modern biochemical and molecular biological techniques, it has become possible to analyze the process of chromatin diminution and the composition of the germ line specific DNA sequences at the molecular level.

InAscaris lumbricoides, about a quarter of the total amount of germ line DNA is eliminated from the presumptive somatic cells during chromatin diminution. Hybridization experiments revealed that germ line and somatic DNA contain the same percentage of 18S+28S rRNA genes. Therefore, chromatin diminution does not serve to discard large amounts of rRNA-coding genes from the germ line cells. On the other hand, over 99%, but not all satellite DNA sequences present in the germ line genome, are expelled from the presumptive somatic cells by chromatin diminution. Molecular cloning and sequence analysis of different restriction endonuclease fragments isolated from the germ line satellite DNA indicated that this eliminated satellite is composed of a whole set of related variant sequences, which differ by small deletions, insertions and single base substitutions. Members of the same variant class are tandemly linked and therefore physically separated from other variant classes. By comparing all the determined sequences, it was possible to establish a 121 bp long and AT rich consensus sequence which itself exhibits an 11 bp long internal short range periodicity. We have no indication for transcriptional activity of the satellite DNA sequences at any stage or tissue tested. Evidence is accumulating that the eliminated DNA contains also other DNA sequences apart from the class of highly repetitive satellite DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albertson, D.G., Nwaorgu, O.C., and Sulston, J.E., Chromatin diminution and a chromosomal mechanism of sexual differentiation inStrongyloides papillosus. Chromosoma75 (1979) 75–87.

    Google Scholar 

  2. Ammermann, D., Chromatin diminution and chromosome elimination: Mechanisms and adaptive significance, in: DNA and evolution: Natural selection and genome size. Ed. T. Cavalier-Smith. John Wiley and Sons, New York 1985 (in press).

    Google Scholar 

  3. Back, E., Müller, F., and Tobler, H., Structural organization of the two main rDNA size classes ofAscaris lumbricoides. Nucl. Acids Res.12 (1984) 1313–1332.

    Google Scholar 

  4. Back, E., Felder, H., Müller, F., and Tobler, H., Chromosomal arrangement of the two main rDNA size classes ofAscaris lumbricoides. Nucl. Acids Res.12 (1984) 1333–1347.

    Google Scholar 

  5. Bantock, C.R., Experiments on chromosome elimination in the gall midge,Mayetiola destructor. J. Embryol. exp. Morph.24 (1970) 257–286.

    Google Scholar 

  6. Beams, H.W., and Kessel, R.G., The problem of germ cell determinants, in: Int. Rev. Cytol. pp. 418–479. Eds G. H. Bourne, J. F. Danielli and K. W. Jeon. Academic Press, New York 1974.

    Google Scholar 

  7. Bonnevie, K., Über Chromatindiminution bei Nematoden. Jena. Z. Naturw.36 (1902) 275–288.

    Google Scholar 

  8. Boveri, T., Über Differenzierung der Zellkerne während der Furchung des Eies vonAscaris megalocephala. Anat. Anz.2 (1887) 688–693.

    Google Scholar 

  9. Boveri, T., Über die Entstehung des Gegensatzes zwischen den Geschlechtszellen und den somatischen Zellen beiAscaris megalocephala. Sber. ges. Morph. Physiol. Münch.8 (1892) 114–125.

    Google Scholar 

  10. Boveri, T., Die Entwicklung vonAscaris megalocephala mit besonderer Rücksicht auf die Kernverhältnisse. Festschr. C. von Kupffer (Jena) (1899) 383–430.

  11. Boveri, T., Die Potenzen der Ascaris-Blastomeren bei abgeänderter Furchung. Zugleich ein Beitrag zur Frage qualitativ-ungleicher Chromosomen-Teilung. Festschr. R. Hertwig (Jena)3 (1910) 131–214.

    Google Scholar 

  12. Britten, R. J., and Kohne, D. E., Nucleotide sequence repetition in DNA. Yb. Carnegie Instn Wash.65 (1966) 78–106.

    Google Scholar 

  13. Davis, A. H., Kidd, G. H., and Carter, C. E., Chromosome diminution inAscaris suum. Two-fold increase of nucleosomal histone to DNA ratios during development. Biochim. biophys. Acta565 (1979) 315–325.

    Google Scholar 

  14. Eddy, E.M., Germ plasm and the differentiation of the germ cell line, in: Int. Rev. Cytol., pp. 229–280. Eds G. H. Bourne, J. F. Danielli and K. W. Jeon. Academic Press, New York 1975.

    Google Scholar 

  15. Edwards, C. L., The idiochromosomes inAscaris megalocephala andAscaris lumbricoides. Arch. Zellforsch.5 (1910) 422–429.

    Google Scholar 

  16. Emmons, S. W., Klass, M. R., and Hirsh, D., Analysis of the constancy of DNA sequences during development and evolution of the nematodeCaenorhabditis elegans. Proc. natn. Acad. Sci. USA76 (1979) 1333–1337.

    Google Scholar 

  17. Felder, H., Lokalisierung von hochrepetitiven DNA-Sequenzen und ribosomalen Genen auf Chromosomen vonAscaris lumbricoides var.suum mittels In-situ-Hybridisierungsexperimenten, pp. 1–54. Diploma thesis, University of Freiburg, Switzerland, 1983.

    Google Scholar 

  18. Gerhart, J. C., Mechanisms regulating pattern formation in the amphibian egg and early embryo, in: Biological regulation and development, vol. 2, pp. 133–316. Ed. R. F. Goldberger. Plenum Press, New York 1980.

    Google Scholar 

  19. Goldstein, P., and Straus, N.A., Molecular characterization ofAscaris suum DNA and of chromatin diminution. Exp. Cell Res.116 (1978) 462–466.

    Google Scholar 

  20. Goodrich, H. B., The germ cells inAscaris incurva. J. exp. Zool.21 (1916) 61–99.

    Google Scholar 

  21. Goswami, U., Chromatin elimination in a rare species of nematodePhysaloptera indiana. Curr. Sci.42 (1973) 576–577.

    Google Scholar 

  22. Illmensee, K., and Mahowald, A. P., Transplantation of posterior polar plasm inDrosophila. Induction of germ cells at the anterior pole of the egg. Proc. natn. Acad. Sci. USA71 (1974) 1016–1020.

    Google Scholar 

  23. Illmensee, K., and Mahowald, A. P., The autonomous function of germ plasm in a somatic region of theDrosophila egg. Exp. Cell Res.97 (1976) 127–140.

    Google Scholar 

  24. Kaulenas, M. S., and Fairbairn, D., RNA metabolism of fertilizedAscaris lumbricoides eggs during uterine development. Exp. Cell Res.52 (1968) 233–251.

    Google Scholar 

  25. mahowald, A. P., and Boswell, R. E., Germ plasm and germ cell development in invertebrates, in: Current Problems in Germ Cell Differentiation, pp. 3–17. Eds A. McLaren and C. C. Wylie. Cambridge University Press, Cambridge 1983.

    Google Scholar 

  26. Meyer, O., Celluläre Untersuchungen an Nematoden-Eiern. Jena. Z. Naturw.29 (1895) 391–410.

    Google Scholar 

  27. Moritz, K. B., DNS-Variation im keimbahnbegrenzten Chromatin und autoradiographische Befunde zu seiner Funktion beiParascaris equorum. Verh. dt. zool. Ges.64 (1970) 36–42.

    Google Scholar 

  28. Moritz, K. B., and Roth, G. E., Complexity of germ line and somatic DNA inAscaris. Nature259 (1976) 55–57.

    Google Scholar 

  29. Mutafova, T., Morphology and behaviour of sex chromosomes during meiosis inAscaris suum. Z. Parasitenkde46 (1975) 291–295.

    Google Scholar 

  30. Müller, F., Walker, P., Aeby, P., Neuhaus, H., Back, E., and Tobler, H., Molecular cloning and sequence analysis of highly repetitive DNA sequences contained in the eliminated genome ofAscaris lumbricoides, in: Embryonic development, Part A.: Genetic aspects, pp. 127–138. Eds M. M. Burger and R. Weber. Alan R. Liss, New York 1982.

    Google Scholar 

  31. Müller, F., Walker, P., Aeby, P., Neuhaus, H., Felder, H., Back, E., and Tobler, H., Nucleotide sequence of satellite DNA contained in the eliminated genome ofAscaris lumbricoides. Nucl. Acids Res.10 (1982) 7493–7510.

    Google Scholar 

  32. Nelson-Rees, W.A., Hoy, M.A., and Roush, R.T., Heterochromatinization, chromatin elimination and haploidization in the parahaploid miteMetaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae). Chromosoma77 (1980) 263–276.

    Google Scholar 

  33. Nieuwkoop, P. D., and Sutasurya, L. A., Primordial germ cells in the invertebrates, pp. 1–258. Cambridge University Press, Cambridge 1981.

    Google Scholar 

  34. Painter, T.S., Chromatin diminution. Trans. Conn. Acad. Arts Sci.36 (1945) 443–448.

    Google Scholar 

  35. Pasternak, J., and Barrell, R., Quantitation of nuclear DNA inAscaris lumbricoides: DNA constancy and chromatin diminution. Genet. Res. Cambridge27 (1976) 339–348.

    Google Scholar 

  36. Roth, G. E., Satellite DNA properties of the germ line limited DNA and the organization of the somatic genomes in the nematodesAscaris suum andParascaris equorum. Chromosoma74 (1979) 355–371.

    Google Scholar 

  37. Roth, G. E., and Moritz, K. B., Restriction enzyme analysis of the germ line limited DNA ofAscaris suum. Chromosoma83 (1981) 169–190.

    Google Scholar 

  38. Sonnenblick, B. P., The early embryology ofDrosophila melanogaster, in: Biology of Drosophila, pp. 62–163. Ed. M. Demerec. Hafner Publ. Comp., New York 1965.

    Google Scholar 

  39. Streeck, R. E., Moritz, K. B., and Beer, K., Chromatin diminution inAscaris suum: nucleotide sequence of the eliminated satellite DNA. Nucl. Acids Res.10 (1982) 3495–3502.

    Google Scholar 

  40. Sulston, J. E., and Brenner, S., The DNA ofCaenorhabditis elegans. Genetics77 (1974) 95–104.

    Google Scholar 

  41. Tobler, H., Smith, K. D., and Ursprung, H., Molecular aspects of chromatin elimination inAscaris lumbricoides. Devl Biol.27 (1972) 190–203.

    Google Scholar 

  42. Tobler, H., and Gut, C., Mitochondrial DNA from 4-cell stages ofAscaris lumbricoides. J. Cell Sci.16 (1974) 593–601.

    Google Scholar 

  43. Tobler, H., Zulauf, E., and Kuhn, O., Ribosomal RNA genes in germ line and somatic cells ofAscaris lumbricoides. Devl Biol.41 (1974) 218–223.

    Google Scholar 

  44. Tobler, H., Genetic difference between germ line and somatic DNA inAscaris lumbricoides, in: Progress in differentiation research, pp. 147–154. Eds N. Müller-Bérat, C. Rosenfeld, D. Tarin and D. Viza. North-Holland Publ. Comp., Amsterdam 1976.

    Google Scholar 

  45. Tobler, H., The differentiation of germ and somatic cell lines in nematodes, in: Germ-Line Soma Differentiation, Results and Problems in Cell Differentiation. Ed. W. Hennig. Springer-Verlag, Berlin 1985 (in press).

    Google Scholar 

  46. Wallace, H., Morray, J., and Langridge, W. H. R., Alternative model for gene amplification. Nature New Biol.230 (1971) 201–203.

    Google Scholar 

  47. Walton, A. C., The oogenesis and early embryology ofAscaris canis Werner. J. Morph.30 (1917) 527–603.

    Google Scholar 

  48. Walton, A. C., Studies on nematode gametogenesis. Z. Zell.-Gewebelehre1 (1924) 167–239.

    Google Scholar 

  49. Weismann, A., Die Continuität des Keimplasmas als Grundlage einer Theorie der Vererbung. Fischer, Jena 1885.

    Google Scholar 

  50. Whitington, P. M., and Dixon, K. E., Quantitative studies of germ plasma and germ cells during early embryogenesis ofXenopus laevis. J. Embryol. exp. Morph.33 (1975) 57–74.

    Google Scholar 

  51. Yao, T., and Pai, S., Heteropycnosis and chromatin diminution inCosmocerca sp.. Sci. Rec. Acad. sin.1 (1942) 197–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobler, H., Müller, F., Back, E. et al. Germ line — soma differentiation inAscaris: A molecular approach. Experientia 41, 1311–1319 (1985). https://doi.org/10.1007/BF01952073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952073

Key words

Navigation