Skip to main content
Log in

Measurement of membrane potential and estimation of effective fixed-charge density in membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Electrical potentialsE m arising across cross-linked phenolsulfonate membrane separating NaCl solutions of molality M1 and M2 have been measured at 25 °C. These values ofE m have been used in the Nernst equation to calculate values for the apparent transport number\(\bar t_{i(app)} \) for the counterion or the co-ion in the membrane. Values of\(\bar t_{i(app)} \) together with the limiting value for the cation transport number in the aqueous phase have been used in the equation developed by Kobatake and co-workers to evaluate the membrane permselectivityP s as a function of external electrolyte concentration. With the help of the equation relatingP s to\(\overline {\phi X} \), the effective fixed-charge density in the membrane (where\(\bar \phi \) is a constant,\(0< \bar \phi< 1\), and\(\bar X\) is the membrane stochiometric charge density and can be evaluated by chemical analysis of the membrane phase), values for\(\overline {\phi X} \) and\(\bar \phi \) have been determined. Values of\(\bar \phi \) were low in dilute solutions and increased with increase in the concentration of the external solution. Similar behavior was noted in the case of another membrane system, cross-linked polymethacrylic acid in contact with KOH solutions. On the other hand, the membrane system, “untreated” collodion in contact with KCl solutions, exhibited a behavior in which the values of\(\bar \phi \), low in dilute solutions, increased and then decreased following a gradual increase in the external concentration. This slight divergence in its behavior was attributed to the heterogeneity of the collodion membrane structure. The reliability of this potentiometric method to estimate effective fixed-charge density in membranes has been discussed in relation to a similar but old method due to Teorell, Meyer and Sievers. Also the significance of the values derived for\(\bar \phi \) has been pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boyd, G. E., Bunzl, K. 1967. Donnan equilibrium in crosslinked polystyrene cation and anion exchangers.J. Amer. Chem. Soc. 89:1776

    Google Scholar 

  • Glasstone, S. 1940. Text-Book of Physical Chemistry. Macmillan & Co., Ltd., London, p. 1202

    Google Scholar 

  • Hills, G. J., Jacobs, P. W. M., Lakshminarayanaiah, N. 1961. Membrane potentials. II. The measurement of e.m.f. of cells containing the cation exchange membrane, crosslinked polymethacrylic acid.Proc. Roy. Soc. (London) A262:257

    Google Scholar 

  • House, C. R. 1974. Water Transport in Cells and Tissues. E. Arnold (Publishers) Ltd., London, p. 123 (Table 4.3) and p. 165 (Table 5.2)

    Google Scholar 

  • Kamo, N., Oikawa, M., Kobatake, Y., 1973. Effective fixed charge density governing membrane phenomena. V. A. reduced expression of permselectivity.J. Phys. Chem. 77:92

    PubMed  Google Scholar 

  • Kamo, N., Toyoshima, Y., Kobatake, Y. 1971a. Fixed charge density effective to membrane phenomena. Part II. Hydrodynamically effective charges of membranes.Kolloid-Z. Z. Polymere.249:1061

    Google Scholar 

  • Kamo, N., Toyoshima, Y., Nozaki, H., Kobatake, Y. 1971b. Fixed charge density effective to membrane phenomena. Part I. Mobilities and activity coefficients of small ions in charged membranes.Kolloid-Z. Z. Polymere. 248:914

    Google Scholar 

  • Kobatake, Y., Kamo, N. 1973. Transport processes in charged membranes.Prog. Polymer Sci. Japan 5:257

    Google Scholar 

  • Lakshminarayanaiah, N. 1963. Activity coefficients of small ions in ion exchange resins.J. Polymer Sci Pt. A.1:139

    Google Scholar 

  • Lakshminarayanaiah, N. 1966a. Membrane potentials. Measurement of electromotive force of cells containing “untreated” collodion membrane.J. Phys. Chem. 70:1588

    PubMed  Google Scholar 

  • Lakshminarayanaiah, N. 1966b. Studies with thin membranes. II. Measurement of membrane potentials and evaluation of membrane fixed charge density.J. Appl. Polymer Sci. 10:1687

    Google Scholar 

  • Lakshminarayanaiah, N. 1969a. Transport Phenomena in Membranes. Academic Press, New York, p. 84

    Google Scholar 

  • Lakshminarayanaiah, N. 1969b. Transport Phenomena in Membranes. Academic Press, New York, p. 199

    Google Scholar 

  • Lakshminarayanaiah, N. 1969c. Counterion transference numbers in ion exchange membranes.J. Phys. Chem. 73:97

    Google Scholar 

  • Lakshminarayanaiah, N. 1969d. Transport Phenomena in Membranes. Academic Press, New York, p. 202

    Google Scholar 

  • Lakshminarayanaiah, N. 1969e. Transport Phenomena in Membranes. Academic Press, New York, p. 196

    Google Scholar 

  • Lakshminarayanaiah, N. 1969f. Transport Phenomena in Membranes. Academic Press, New York, p. 232

    Google Scholar 

  • Lakshminarayanaiah, N. 1969g. Transport Phenomena in Membranes. Academic Press, New York, p. 197

    Google Scholar 

  • Lakshminarayanaiah, N. 1969h. Transport Phenomena in Membranes. Academic Press, New York, p. 86

    Google Scholar 

  • Lakshminarayanaiah, N. 1974. Potentiometric estimation of charges in barnacle muscle fibers under internal perfusion.J. Membrane Biol. 16:145

    Google Scholar 

  • Lakshminarayanaiah, N., Brennen, K. R. 1966. Ion and water transference across “untreated” collodion membranes.Electrochim. Acta 11:949

    Google Scholar 

  • Lakshminarayanaiah, N., Subrahmanyan, V. 1964. Measurement of membrane potentials and test of theories.J. Polymer Sci. Pt.A.2:4491

    Google Scholar 

  • Lakshminarayanaiah, N., Subrahmanyan, V. 1968. Current dependence of water transport in cation-exchange membranes.J. Phys. Chem. 72:1253

    Google Scholar 

  • Mauro, A., Finkelstein, A. 1958. Realistic model of a fixed charge membrane according to the theory of Teorell, Meyer and Sievers.J. Gen. Physiol. 42:385

    PubMed  Google Scholar 

  • Meyer, K. H., Sievers, J. F. 1936. La perméabilité des membranes. I. Théorie de la perméabilitié ionique.Helv. Chim. Acta 19:649. II. Essais avec des membranes sélectives artificielles.Helv. Chim. Acta 19:665. IV. Analyse de la structure de membranes végétales et animales.Helv. Chim. Acta 19:987

    Google Scholar 

  • Pikal, M. J., Boyd, G. E. 1973. Tracer diffusion of HTO and simple ions in aqueous solutions of sodiump-ethylbenzenesulfonate. Comparisions with polyelectrolyte solutions and gels.J. Phys. Chem. 77:2918

    Google Scholar 

  • Rice, S. A., Nagasawa, M. 1961. Polyelectrolyte Solutions. A Theoretical Introduction. Academic Press, New York, p. 399

    Google Scholar 

  • Teorell, T. 1935a. An attempt to formulate a quantitative theory of membrane permeability.Proc. Soc. Exp. Biol. 33:282

    Google Scholar 

  • Teorell, T. 1935b. Studies on the “diffusion effect” upon ionic distribution. I. Some theoretical considerations.Proc. Nat. Acad. Sci. 21:152

    Google Scholar 

  • Teorell, T. 1936. Ionic transference numbers in cellophane membranes.J. Gen. Physiol. 19:917

    Google Scholar 

  • Teorell, T. 1953. Transport processes and electrical phenomena in ionic membranes.Prog. Biophys. Biophys. Chem. 3:305

    Google Scholar 

  • Thompson, T. E. 1964. The properties of bimolecular phospholipid membranes.In: Cellular Membranes in Development. M. Locke, editor. p. 83. Academic Press, New York

    Google Scholar 

  • Tien, H. T. 1971. Bilayer lipid membranes. An experimental model for biological membranes.In: The Chemistry of Biosurfaces. M. L. Hair, editor. Vol. 1, p. 233. Marcel Dekker Inc., New York

    Google Scholar 

  • Toyoshima, Y., Kobatake, Y., Fujita, H. 1967a. Studies of membrane phenomena. Part 4. Membrane potential and permeability.Trans. Faraday Soc. 63:2814

    Google Scholar 

  • Toyoshima, Y., Yuasa, M., Kobatake, Y., Fujita, H. 1967b. Studies of membrane phenomena. Part 3. Electrical resistance of membranes.Trans. Faraday Soc. 63:2803

    Google Scholar 

  • Ueda, T., Kamo, N., Ishida, N., Kobatake, Y. 1972. Effective fixed charge density governing membrane phenomena. IV. Further study of activity coefficients and mobilities of small ions in charged membranes.J. Phys. Chem. 76:2447

    Google Scholar 

  • Weast, R. C. 1972–73. Hand-Book of Chemistry and Physics. Chemical Rubber Company, Cleveland, Ohio, p. D-211

    Google Scholar 

  • Winger, A. G., Bodamer, G. M., Kunin, R. 1953. Some electrochemical properties of new synthetic ion exchange membranes.J. Electrochem. Soc. 100:178

    Google Scholar 

  • Yuasa, M., Kobatake, Y., Fujita, H. 1968. Studies of membrane phenomena. VII. Effective charge densities of membranes.J. Phys. Chem. 72:2871

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshminarayanaiah, N. Measurement of membrane potential and estimation of effective fixed-charge density in membranes. J. Membrain Biol. 21, 175–189 (1975). https://doi.org/10.1007/BF01941068

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01941068

Keywords

Navigation