Skip to main content
Log in

biochemical reaction mechanisms in sulfur oxidation by chemosynthetic bacteria

  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

Aspects of the biochemistry of the oxidation of inorganic sulfur compounds are discussed in thiobacilli but chiefly inThiobacillus denitrificans. Almost all of the thiobacilli (e.g. T. denitrificans, T. neapolitanus, T. novellus, andThiobacillus A 2) were capable of producing approximately 7.5 moles of sulfuric acid aerobically from 3.75 moles of thiosulfate per gram of cellular protein per hr. By far the most prolific producer of sulfuric acid (or sulfates) from the anaerobic thiosulfate oxidation with nitrates wasT. denitrificans which was capable of producing 15 moles of sulfates from 7.5 moles of thiosulfate with concomitant reduction of 12 moles of nitrate resulting in the evolution of 6 moles of nitrogen gas/g protein/hr. The oxidation of sulfide was mediated by the flavo-protein system and cytochromes ofb, c, o, anda-type. This process was sensitive to flavoprotein inhibitors, antimycin A, and cyanide. The aerobic thiosulfate oxidation on the other hand involved cytochromec : O2 oxidoreductase region of the electron transport chain and was sensitive to cyanide only. The anaerobic oxidation of thiosulfate byT. denitrificans, however, was severely inhibited by the flavoprotein inhibitors because of the splitting of the thiosulfate molecule into the sulfide and sulfite moieties produced by the thiosulfate-reductase. Accumulation of tetrathionate and to a small extent trithionate and pentathionate occurred during anaerobic growth ofT. denitrificans. These polythionates were subsequently oxidized to sulfate with the concomitant reduction of nitrate to N2. Intact cell suspensions catalyzed the complete oxidation of sulfide, thiosulfate, tetrathionate, and sulfite to sulfate with the stoichiometric reduction of nitrate, nitrite, nitric oxide, and nitrous oxide to nitrogen gas thus indicating that NO2 , NO, and N2O are the possible intermediates in the denitrification of nitrate. This process was mediated by the cytochrome electron transport chain and was sensitive to the electron transfer inhibitors. The oxidation of sulfite involved cytochrome-linked sulfite oxidase as well as the APS-reductase pathways. The latter was absent inT. novellus andThiobacillus A 2. In all of the thiobacilli the inner as well as the outer sulfur atoms of thiosulfate were oxidized at approximately the same rate by intact cells. The sulfide oxidation occurred in two stages: (a) a cellular-membrane-associated initial and rapid oxidation reaction which was dependent upon sulfide concentration, and (b) a slower oxidation reaction stage catalyzed by the cellfree extracts, probably involving polysulfides. InT. novellus andT. neapolitanus the oxidation of inorganic sulfur compounds is coupled to energy generation through oxidative phosphorylation, however, the reduction of pyridine nucleotides by sulfur compounds involved an energy-linked reversal of electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adair, F. W., Membrane associated sulfur oxidation by the autotrophThiobacillus thiooxidans. J. Bacteriol.92, 899 (1966).

    CAS  PubMed  Google Scholar 

  2. Adams, C. A., Warnes, G. M. and Nicholas, D. J. D., A sulfite-dependent nitrite reductase fromThiobacillus denitrificans. Biochim. Biophys. Acta235, 398 (1971).

    CAS  Google Scholar 

  3. Aleem, M. I. H., Thiosulfate oxidation and electron transfer inThiobacillus novellus. J. Bacteriol.90 95 (1965).

    CAS  Google Scholar 

  4. Aleem, M. I. H., Generation of reducing power in chemosynthesis. III. Energylinked reduction of pyridine nucleotides inThiobacillus novellus. J. Bacteriol.91, 729 (1966).

    CAS  PubMed  Google Scholar 

  5. Aleem, M. I. H., Generation of reducing power in chemosynthesis. IV. Energylinked reduction of pyridine nucleotides by succinate inThiobacillus novellus. Biochim. Biophys. Acta128, 1 (1966).

    CAS  PubMed  Google Scholar 

  6. Aleem, M. I. H., Generation of reducing power in chemosynthesis. VI. Energylinked reactions in the chemoautotrophThiobacillus neapolitanus. Antonie van Leeuwenhoek J. Microbiol. Serol.35, 369 (1969).

    Article  Google Scholar 

  7. Aleem, M. I. H., Oxidation of inorganic nitrogen compounds. Ann. Rev. Plant Physiol.21, 67 (1970).

    CAS  Google Scholar 

  8. Aleem, M. I. H., Hoch, G. E. and Varner, J. E., Water as the source of oxidizing and reducing power in bacterial chemosynthesis. Proc. Natl. Acad. Sci., U.S.54, 869 (1965).

    CAS  Google Scholar 

  9. Aminuddin, M. and Nicholas, D. J. D., Sulphide oxidation linked to the reduction of nitrate and nitrite inThiobacillus denitrificans. Biochim. Biophys. Acta325, 81 (1973).

    CAS  PubMed  Google Scholar 

  10. Baalsrud, K. and Baalsrud, K. S., Studies onThiobacillus denitrificans. Arch. Mikrobiol.20, 34 (1954).

    Article  CAS  PubMed  Google Scholar 

  11. Bowen, T. J., Happold, F. C. and Taylor, B., Studies on adenosine-5-phosphosulfate reductase fromThiobacillus denitrificans. Biochim. Biophys. Acta118, 566 (1966).

    CAS  PubMed  Google Scholar 

  12. Charles, A. M. and Suzuki, I., Mechanism of thiosulfate oxidation byThiobacillus novellus. Biochim. Biophys. Acta128, 510 (1966).

    Google Scholar 

  13. Charles, A. M. and Suzuki, I., Purification and properties of sulfite: cytochromec-oxidoreductase fromThiobacillus novellus. Biochim. Biophys. Acta128, 522 (1966).

    Google Scholar 

  14. Cole, J. S. III and Aleem, M. I. H., Electron transport-linked compared with proton-induced ATP generation inThiobacillus novellus. Proc. Natl. Acad. Sci., U.S.70, 3571 (1973).

    CAS  Google Scholar 

  15. Cole, J. S. III and Aleem, M. I. H., Oxidative Phosphorylation inThiobacillus novellus. Biochem. Biophys. Research Commun.38, 736 (1970).

    Google Scholar 

  16. Davis, E. A. and Johnson, E. J., Phosphorylation coupled to the oxidation of sulfite and 2-mercaptoethanol in extracts ofThiobacillus thioparus. Can. J. Microbiol.13, 873 (1967).

    CAS  PubMed  Google Scholar 

  17. Gibbs, M. and Schiff, J. A., Chemosynthesis: The energy relations of chemoautotrophic organisms. Plant Physiol.1B, 279 (1960).

    CAS  Google Scholar 

  18. Hempfling, W. P. and Vishniac, W., Oxidative phosphorylation in extracts ofThiobacillus X. Biochem. Z.342, 272 (1965).

    CAS  PubMed  Google Scholar 

  19. Hempfling, W. P., Trudinger, P. A. and Vishniac, W., Purification and some properties of sulfite oxidase fromThiobacillus neapolitanus. Arch Mikrobiol.59, 149 (1967).

    Article  CAS  PubMed  Google Scholar 

  20. Ishaque, M. and Aleem, M. I. H., Intermediates of denitrification in the chemoautotrophThiobacillus denitrificans. Arch. Mikrobiol.94, 269 (1973).

    Article  CAS  PubMed  Google Scholar 

  21. Kelly, D. P. and Syrett, P. J., The effect of uncoupling agents on carbon dioxide fixation by aThiobacillus. J. Gen. Microbiol.34, 307 (1964).

    CAS  PubMed  Google Scholar 

  22. Kelly, D. P. and Syrett, P. J., Energy coupling during sulfur compound oxidation byThiobacillus sp strainc. J. Gen. Microbiol.43, 109 (1965).

    Google Scholar 

  23. Kelly, D. P., Biochemistry of oxidation of inorganic sulfur compounds by micro-organisms. Australian J. Sci.31, 165 (1968).

    CAS  Google Scholar 

  24. Kelly, D. P., Autotrophy: Concepts of lithotrophic bacteria and their organic metabolism. Ann. Rev. Microbiol.25, 177 (1971).

    CAS  Google Scholar 

  25. Kiesow, L., Energy-linked reactions in chemoautotrophic organisms. Curr. Top. Bioenerg.2, 195 (1967).

    CAS  Google Scholar 

  26. Kula, T. J., Aleem, M. I. H. and Wilson, D. F., Oxidation-reduction potentials of the cytochromes ofThiobacillus A 2. Bacteriol. Proc.75, 136 (1975).

    Google Scholar 

  27. Lees, H., Energy metabolism in chemolithotrophic bacteria. Ann. Rev. Microbiol.14, 83 (1960).

    Google Scholar 

  28. London, J. and Rittenberg, S. C., Path of sulfur in sulfide and thiosulfate oxidation by Thiobacilli. Proc. Natl. Acad. Sci. U.S.52, 1183 (1964).

    CAS  Google Scholar 

  29. Lyric, R. M. and Suzuki, I., Enzymes involved in the metabolism of thiosulfate byThiobacillus thioparus. Can. J. Biochem.48, 344 (1970).

    CAS  PubMed  Google Scholar 

  30. Mitchell, P., Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev.41, 445 (1966).

    CAS  PubMed  Google Scholar 

  31. Mitchell, P., Chemiosmotic coupling in energy transduction: A logical development of biochemical knowledge. Bioenergetics3, 5 (1972).

    CAS  Google Scholar 

  32. Moriarity, J. W. and Nicholas, D. J. D., Enzymic sulfide oxidation byThiobacillus concretivorus. Biochim. Biophys. Acta184, 114 (1969).

    Google Scholar 

  33. Moriarity, J. W. and Nicholas, D. J. D., Products of sulphide oxidation in extracts ofThiobacillus concretivorus. Biochim. Biophys. Acta197, 143 (1970).

    Google Scholar 

  34. Moriarity, J. W. and Nicholas, D. J. D., Electron transfer during sulphide and sulphite oxidation byThiobacillus concretivorus. Biochim. Biophys. Acta216, 130 (1970).

    Google Scholar 

  35. Peck, H. D. Jr., Adenosine-5-phospho-sulfate as an intermediate in the oxidation of thiosulfate byThiobacillus thioparus. Proc. Natl. Acad. Sci., U.S.46, 1053 (1960).

    CAS  Google Scholar 

  36. Peck, H. D. Jr., Comparative metabolism of inorganic sulfur compounds in micro-organisms. Bacteriol. Rev.26, 67 (1962).

    CAS  PubMed  Google Scholar 

  37. Peck, H. D. Jr., Energy-coupling mechanisms in chemolithotrophic bacteria. Ann. Rev. Microbiol.22, 489 (1968).

    CAS  Google Scholar 

  38. Peeters, T. L. and Aleem, M. I. H., Oxidation of sulfur compounds and electron transport inThiobacillus denitrificans. Arch. Mikrobiol.71, 319 (1970).

    Article  CAS  PubMed  Google Scholar 

  39. Rees, M. and Nason, A., Incorporation of atmospheric oxygen into nitrite formed during ammonia oxidation byNitrosomonas europaea. Biochim. Biophys. Acta113, 398 (1966).

    CAS  PubMed  Google Scholar 

  40. Rittenberg, S. C., The role of exogenous organic matter in the physiology of chemolithotrophic bacteria. Adv. Microbiol. Physiol.3, 159 (1969).

    CAS  Google Scholar 

  41. Ross, A. J., Schoenhoff, R. L. and Aleem, M. I. H., Electron transport and coupled phosphorylation in the chemoautotrophThiobacillus neapolitanus. Biochem. Biophys. Research Commun.32, 301 (1968).

    CAS  Google Scholar 

  42. Roth, C. W., Hempfling, W. P., Conners, J. N. and Vishniac, W. V., Thiosulfate- and sulfide-dependent pyridine nucleotide reduction and gluconeogeneiss in intactThiobacillus neapolitanus. J. Bacteriol.114, 592 (1973).

    CAS  PubMed  Google Scholar 

  43. Roy, A. B. and Trudinger, P. A., The Biochemistry of Inorganic Compounds of Sulfur. Cambridge Univ. Press, Cambridge (1970).

    Google Scholar 

  44. Sadler, M. H. and Johnson, E. J., A comparison of the NADH oxidase electron transport systems of two obligatory chemolithotrophic bacteria. Biochim. Biophys. Acta283, 167 (1972).

    CAS  PubMed  Google Scholar 

  45. Saxena, J. and Aleem, M. I. H., Generation of reducing power in chemosynthesis. VII. Mechanism of pyridine nucleotide reduction by thiosulfate in the chemoautotrophThiobacillus neapolitanus. Arch. Mikrobiol.84, 317 (1972).

    Article  CAS  PubMed  Google Scholar 

  46. Saxena, J. and Aleem, M. I. H., Oxidation of sulfur compounds and coupled phosphorylation in the chemoautotrophThiobacillus neapolitanus. Can. J. Biochem.51, 560 (1973).

    CAS  PubMed  Google Scholar 

  47. Schlegel, H. G. and Eberhardt, U., Regulatory phenomena in the metabolism of Knallgas bacteria. Adv. Microbial. Physiol.7, 205 (1972).

    CAS  Google Scholar 

  48. Senez, J. C., Some considerations on the energetics of bacterial growth. Bacteriol. Rev.26, 95 (1962).

    CAS  PubMed  Google Scholar 

  49. Silver, M. and Lundgren, D. G., Sulfur-oxidizing enzyme ofFerrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can. J. Biochem.46, 457 (1968).

    CAS  PubMed  Google Scholar 

  50. Suzuki, I., Oxidation of elemental sulfur by an enzyme system fromThiobacillus thiooxidans. Biochim. Biophys. Acta104, 359 (1965).

    CAS  PubMed  Google Scholar 

  51. Suzuki, I., Mechanisms of inorganic oxidation and energy coupling. Ann. Rev. Microbiol.28, 85 (1974).

    CAS  Google Scholar 

  52. Suzuki, I., Incorporation of atmospheric oxygen-18 into thiosulfate by the sulfuroxidizing system ofThiobacillus thiooxidans Biochim. Biophys. Acta110, 97 (1965).

    CAS  Google Scholar 

  53. Suzuki, I. and Silver, M., The initial product and properties of the sulfur oxidizing enzyme of thiobacilli. Biochim. Biophys. Acta122, 22 (1966).

    CAS  PubMed  Google Scholar 

  54. Taylor, B. F., Oxidation of elemental sulfur by an enzyme system fromThiobacillus neapolitanus. Biochim. Biophys. Acta170, 112 (1968).

    CAS  PubMed  Google Scholar 

  55. Trudinger, P. A., Thiosulfate oxidation and cytochromes inThiobacillus X. 1. Fractionation of bacterial extracts and properties of cytochromes. Biochem. J.78, 673 (1961).

    CAS  PubMed  Google Scholar 

  56. Trudinger, P. A., Thiosulfate oxidation and cytochromes inThiobacillus X. 2. Thiosulfate-oxidizing enzyme. Biochem. J.78, 680 (1961).

    CAS  PubMed  Google Scholar 

  57. Trudinger, P. A., Assimilitory and dissimilitory metabolism of inorganic sulphur compounds by micro-organisms. Adv. Microbial. Physiol.3, 111 (1969).

    CAS  Google Scholar 

  58. Trudinger, P. A., Products of anaerobic metabolism of tetrathionate byThiobacillus X. Australian J. Biol. Chem.17, 446 (1964).

    CAS  Google Scholar 

  59. Trudinger, P. A., The effects of thiosulfate and oxygen concentration on tetrathionate oxidation byThiobacillus X andT. thioparus. Biochem. J.90, 640 (1964).

    CAS  PubMed  Google Scholar 

  60. Trudinger, P. A., The metabolism of inorganic sulfur compounds by thiobacilli. Rev. Pure Applied Chem.17, 1 (1967).

    CAS  Google Scholar 

  61. Vishniac, W. and Santer, M., The Thiobacilli. Bacteriol. Rev.21, 195 (1957).

    CAS  PubMed  Google Scholar 

  62. Vishniac, W. and Trudinger, P. A., Carbon dioxide fixation and substrate oxidation in the chemoautotrophic sulfur and hydrogen bacteria. Bacteriol. Rev.26, 168 (1962).

    CAS  PubMed  Google Scholar 

  63. Wallace, W. and Nicholas, D. J. D., The biochemistry of nitrifying microorganisms. Biol. Rev.44, 359 (1969).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper read at the Symposium on the Sulphur Cycle, Wageningen, May 1974. Summary already inserted on p. 189 of the present volume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleem, M.I.H. biochemical reaction mechanisms in sulfur oxidation by chemosynthetic bacteria. Plant Soil 43, 587–607 (1975). https://doi.org/10.1007/BF01928521

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01928521

Keywords

Navigation