Skip to main content
Log in

Thermal decomposition of cellulose

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

Cellulose has been pyrolysed in nitrogen at two heating rates, and the rates of formation of total gases, and the oxides of carbon, have been measured. The quantities of products formed, and their first order kinetic parameters, are strongly dependent on the heating rate.

Résumé

On a effectué la pyrolyse de la cellulose en atmosphère d'azote avec deux vitesses de chauffage et l'on a mesuré la vitesse de formation des gaz, dans leur totalité, ainsi que celle des oxydes de carbone. Les quantités de produits formés et leurs paramètres cinétiques du premier ordre dépendent fortement de la vitesse de chauffage.

Zusammenfassung

Cellulose wurde in Stickstoff-Atmosphäre bei zwei Aufheizungsgeschwindigkeiten pyrolysiert und die Bildungsgeschwindigkeiten der Gesamtgase sowie der Kohlenoxide gemessen. Die Mengen der gebildeten Produkte und ihre kinetischen Parameter erster Ordnung hängen stark von der Aufheizungsgeschwindigkeit ab.

Резюме

Был проведен пиролиз целлюлозы в атмосфер е азота при двух скорос тях нагрева. Скорость образовани я всех газов и окислов углерода была измерена. Количе ство образующихся продук тов и их кинетические параметры первого порядка знач ительно зависели от скорости нагрева.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. R. Welker, J. Fire and Flammability, 1 (1970) 12.

    Google Scholar 

  2. R. Alger, Natn. Bur. Stand. Special Publication, “The Mechanisms of Pyrolysis, Oxidation, and Burning of Organic Materials”, 357 (1972) 171.

    Google Scholar 

  3. W. K. Tang andW. K. Neill, J. Polym. Sci., C, 6 (1964) 65.

    Google Scholar 

  4. A. J. Stamm, Ind. Eng. Chem., 48 (1956) 413.

    Google Scholar 

  5. T. Hirata andH. Abe, Mokuzai Gakkaishi, 19 (1973) 451.

    Google Scholar 

  6. K. Akita andM. Kase, J. Polym. Sci., A, 5 (1967) 833.

    Google Scholar 

  7. D. Dollimore andB. Holt, J. Polym. Sci., A, 11 (1973) 1703.

    Google Scholar 

  8. K. S. Patel, K. C. Patel andR. D. Patel, Makromolek. Chem., 132 (1970) 7.

    Google Scholar 

  9. A. Basch andM. Lewin, J. Polym. Sci., A, 11 (1973) 3071.

    Google Scholar 

  10. R. J. McCarter, Textile Res. J., 42 (1972) 709.

    Google Scholar 

  11. E. J. Murphy, J. Polym. Sci., 58 (1962) 649.

    Google Scholar 

  12. D. J. Bryce andC. T. Greenwood, “Thermal Analysis of Fibres and Fibre-Forming Polymers”, Edited by R. F. Schwenker Jr., Interscience, New York, 1966, p. 149.

    Google Scholar 

  13. A. Murty Kanury, Combust. Flame, 18 (1972) 75.

    Google Scholar 

  14. A. E. Lipska andF. A. Wodley, J. Appl. Polym. Sci., 13 (1969) 851.

    Google Scholar 

  15. S. L. Madovsky, V. E. Hart andS. Straus, J. Res. Natl. Bur. Stand., 56 (1956) 343.

    Google Scholar 

  16. D. P. C. Fung, Tappi, 52 (1969) 319.

    Google Scholar 

  17. H. Okamoto, Mokuzai Gakkaishi, 19 (1973) 353.

    Google Scholar 

  18. Y. Tsuchiya andK. Sumi, J. Appl. Polym. Sci., 14 (1970) 2003.

    Google Scholar 

  19. F. A. Wodley, J. Appl. Polym. Sci., 15 (1971) 835.

    Google Scholar 

  20. F. Shafizadeh, Adv. Carbohyd. Chem., 23 (1968) 419.

    Google Scholar 

  21. R. R. Baker andK. D. Kilburn, Beitr. Tabakforsch., 7 (1973) 79.

    Google Scholar 

  22. R. R. Baker, Beitr. Tabakforsch., 8 (1975) 16.

    Google Scholar 

  23. P. H. S. Henry, Proc. Roy. Soc., A, 171 (1939) 215.

    Google Scholar 

  24. M. M. Tang andR. Bacon, Carbon, 2 (1964) 211.

    Google Scholar 

  25. E. W. Stern, A. S. Logiudice andH. Heinemann, Ind. Eng. Chem., Process Des. and Dev., 4 (1965) 171.

    Google Scholar 

  26. J. J. Kipling, Q. Rev. Chem. Soc., 10 (1956) 1.

    Google Scholar 

  27. E. L. Back, M. T. Htun, M. Jackson andF. Johanson, Tappi, 50 (1967) 542.

    Google Scholar 

  28. D. Dollimore andG. R. Heal, Carbon, 5 (1967) 65.

    Google Scholar 

  29. R. F. Schwenker Jr. andL. R. Beck Jr., J. Polym. Sci., C, 2 (1963) 331.

    Google Scholar 

  30. P. K. Chatterjee andC. M. Conrad, Textile Res. J., 36 (1966) 487.

    Google Scholar 

  31. A. E. Lipska andW. J. Parker, J. Appl. Polym. Sci., 10 (1966) 1439.

    Google Scholar 

  32. U. K. Shivadev andH. W. Emmons, Combust. Flame, 22 (1974) 223.

    Google Scholar 

  33. M. V. Ramiah, J. Appl. Polym. Sci., 14 (1970) 1323.

    Google Scholar 

  34. A. F. Roberts, J. Appl. Polym. Sci., 14 (1970) 244.

    Google Scholar 

  35. M. V. Ramiah andD. A. L. Goring, Cell. Chem. Technol., 1 (1967) 277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, R.R. Thermal decomposition of cellulose. Journal of Thermal Analysis 8, 163–173 (1975). https://doi.org/10.1007/BF01912473

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01912473

Keywords

Navigation