Skip to main content
Log in

Calcium movements in relation to heart function

Basic Research in Cardiology Aims and scope Submit manuscript

Summary

It is widely recognized that calcium is of singular importance in the viability of the myocardial cell, nonetheless little is known concerning the precise nature of the action of calcium in myocardium as to how it maintains the life of the cell and how it may dictate the death of the cell. However, recent advances in research involved with the study of calcium movement in the heart have been highly valuable for the formulation of new concepts with respect to the physiological and pathological aspects of calcium metabolism in the myocardium. It is becoming clear that calcium movements are closely related to cardiac electrophysiological events, contractile function, membrane integrity and energy metabolism. In particular, a novel theory involving phosphatidylinositol turnover and Ca2+-dependent ATPase activation has been advanced regarding the mechanism and control of calcium entry into the cardiac cell upon excitation. Alterations in the regulation of calcium metabolism through the interaction of a number of separate, elements may affect calcium distribution in the cell and thereby may change cardiac function and metabolism. The part calcium plays in the genesis of pathological states in the myocardium is discussed in the light of research employing various experimental protocols. Intracellular calcium overload and deficiency are postulated to contribute to cardiac contractile failure and cell death through a number of distinct mechanisms. It is now a real challenge to understand the precise nature of processes associated with the occurrence of intracellular calcium overload or intracellular calcium deficiency in order to achieve proper management of cardiac disorders.

Zusammenfassung

Es ist allgemein anerkannt, daß Calcium von besonderer Bedeutung für die Funktion der Myokardzelle ist. Trotzdem ist über die genaue Natur der Calcium-Wirkung sowie auch über die mögliche Bedeutung von Calcium für das Absterben einer Myokardzelle wenig bekannt. Fortschritte in der Erforschung der Calcium-Bewegungen im Herzen ermöglichen neue Vorstellungen über die Rolle des Calciums unter physiologischen und pathophysiologischen Bedingungen. Offensichtlich bestehen enge Beziehungen zwischen Calcium-Bewegungen und elektrophysiologischen Abläufen, kontraktiler Funktion, Membranintegrität und Energiemetabolismus. Insbesondere wurde eine neue Theorie entwickelt, die den giemetabolismus. Insbesondere wurde eine neue Theorie entwickelt, die den Inositphosphatid-Umsatz und die Aktivierung der Ca-abhängigen ATPase berücksichtigt im Hinblick auf die Mechanismen und die Kontrolle des Calcium-Eintritts in die Zelle bei Erregung. Änderungen in der Regulierung des Calcium-Stoffwechsels können die Ca-Verteilung in der Zelle beeinflussen und dadruch Herzfunktion und Stoffwechsel verändern. Die Rolle, die Calcium bei der Entwicklung pathologischer Zustände im Myokard spielt, wird im Lichte der Forschungsergebnisse bei Verwendung unterschiedlicher experimenteller Ansätze diskutiert. Es wird postuliert, daß Überladung der Zelle mit Calcium und Calcium-Mangel der Zelle zum kontraktilen Versagen des Herzens und zum Zelltod beitragen durch eine Anzahl definierter Mechanismen. Im Hinblick auf eine sachgerechte Behandlung kardialer Störungen stellt sich daher die Aufgabe, die genaue Natur der Prozesse zu klären, die mit Calcium-Überbeladung oder Calcium-Mangel einhergehen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Adams, R. J., A. Schwartz: Comparative mechanisms for contraction of cardiac and skeletal muscle. Chest78 (Suppl. 1), 123–139 (1980).

    PubMed  Google Scholar 

  2. Alto, L. E., N. S. Dhalla: Myocardial cation contents during induction of calcium paradox. Amer. J. Physiol.237, H713–H719 (1979).

    Google Scholar 

  3. Alto, L. E., N. S. Dhalla: Role of changes in microsomal calcium uptake in the effects of reperfusion of Ca2+-deprived rat hearts. Circulat. Res.48, 17–24 (1981).

    PubMed  Google Scholar 

  4. Anand-Srivastava, M. B., V. Panagia, N. S. Dhalla: Properties of Ca2+ or Mg2+ dependent ATPase in rat heart sarcolemma. Adv. Myocardiol.3, in press (1982).

  5. Bailey, L. E., P. E. Dresel: Correlation of contractile force with a calcium pool in the isolated cat heart. J. Gen. Physiol.52, 969–982 (1968).

    PubMed  Google Scholar 

  6. Berridge, M. J.: Receptors and calcium signalling. Trends Pharmacol. Sci.1, 419–424 (1980).

    Google Scholar 

  7. Bers, D. M., K. D. Philipson, A. Y. Nishimoto: Sodium-calcium exchange and sidedness of isolated cardiac sarcolemmal vesicles. Biochim. Biophys., Acta601, 358–371 (1980).

    Google Scholar 

  8. Bers, D. M., K. D. Philipson, G. A. Langer: Cardiac contractility and sarcolemmal calcium binding in several cardiac muscle preparation., Amer. J. Physiol.240, H576–H583 (1981).

    Google Scholar 

  9. Besch, H. R., A. M. Watanabe: The positive inotropic effect of digitoxin: independence from sodium accumulation. J. Pharmacol. Exp. Ther.207, 958–965 (1978).

    PubMed  Google Scholar 

  10. Bihler, I.: Integration of glucose transport with metabolic and functional activity of heart muscle. Adv. Myocardiol.2, 3–15 (1980).

    PubMed  Google Scholar 

  11. Calderon, P., J. Furnelle, J. Christophe: Phosphatidylinositol turnover and calcium movement in the rat pancreas. Amer. J. Physiol.238, G247-G254 (1980).

    PubMed  Google Scholar 

  12. Cheung, W. Y.: Cyclic 3,5-nucleotide phosphodiesterase: Evidence for and properties of a protein activator. J. Biol. Chem.246, 2859–2869 (1971).

    PubMed  Google Scholar 

  13. Cohen, P., A. Burchell, J. G. Foulkes, P. T. W. Cohen: Identification, of the Ca2+-dependent modulator protein as the fourth subunit of rabbit skeletal muscle phosphorylase kinase. FEBS Lett.92, 287–293 (1978).

    PubMed  Google Scholar 

  14. Cook, W. J., C. E. Bugg: Calcium-carbohydrate bridges composed of uncharged sugars. Structure of a hydrated calcium bromide complex of alphafucose. Biochim. Biophys. Acta.389, 428–435 (1975).

    PubMed  Google Scholar 

  15. Crevey, B. J., G. A. Langer, J. S. Frank: Role of Ca2+ in the maintenance of rabbit myocardial cell membrane structural and function integrity. J. Mol. Cell. Cardiol.10, 1081–1100 (1978).

    PubMed  Google Scholar 

  16. Crompton, M., M. Kunzi, E. Carafoli: The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Eur. J. Biochem.79, 549–558 (1977).

    PubMed  Google Scholar 

  17. Dayton, W. R., W. J. Reville, D. E. Goll, M. H. Stromer: A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme. Biochemistry15, 2159–2967 (1976).

    PubMed  Google Scholar 

  18. Denton, W. R., W. J. Richards, J. G. Chin: Calcium ions and the regulation of NAD+-linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochem. J.176, 899–906 (1978).

    PubMed  Google Scholar 

  19. Denton, R. M., J. G. McCormack, N. J. Edgell: Role of calcium ions in the regulation of intramitochondrial metabolism. Biochem. J.190, 107–117 (1980).

    PubMed  Google Scholar 

  20. Dhalla, N. S.: Involvement of membrane systems in heart failure due to intracellular calcium overload and deficiency. J. Mol. Cell. Cardiol.8, 661–667 (1976).

    Google Scholar 

  21. Dhalla, N. S., A. Ziegelhoffer, J. A. C. Harrow: Regulatory role of membrane systems in heart function. Can. J. Physiol. Pharmacol.55, 1211–1234 (1977).

    PubMed  Google Scholar 

  22. Dhalla, N. S., J. C. Yates, V. Proveda: Calcium-linked changes in myocardial metabolism in the isolated perfused rat heart. Can. J. Physiol. Pharmacol.55, 925–933 (1977).

    PubMed  Google Scholar 

  23. Dhalla, N. S., P. K. Das, G. P. Sharma: Subcellular basis of cardiac contractile failure. J. Mol. Cell. Cardiol.10, 363–385 (1978).

    PubMed  Google Scholar 

  24. Dhalla, N. S., M. B. Anand-Srivastava, B. S. Tuana, R. L. Khandelwal: Solubilization of calcium dependent adenosine triphosphatase from rat heart sarcolemma. J. Mol. Cell. Cardiol.13, 413–423 (1981).

    PubMed  Google Scholar 

  25. Dobson, J. G., S. E. Mayer: Mechanisms of activation of cardiac glycogen phosphorylase in ischemia and anoxia. Circulat. Res.33, 413–423 (1973).

    Google Scholar 

  26. Drummond, G. I., L. Duncan, A. J. D. Friesen: Some properties of cardiac phosphorylase b kinase. J. Biol. Chem.240, 2778–2785 (1965).

    PubMed  Google Scholar 

  27. Fabiato, A., F. Fabiato: Calcium release from the sarcoplasmic reticulum. Circulat. Res.40, 119–129 (1977).

    PubMed  Google Scholar 

  28. Fabiato, A., F. Fabiato: Calcium and cardiac excitation-contraction coupling. Ann. Rev. Physiol.41, 473–484 (1979).

    Google Scholar 

  29. Fleckenstein, A., 1971: Specific inhibitors and promoters of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention or production of myocardial lesions, in: Calcium and the Heart, eds. P. Harris and L. Opie (Academic Press, London) p. 135.

    Google Scholar 

  30. Frank, J. S., G. A. Langer, L. M. Nudd, K. Seraydarian: The myocardial cell surface, its histochemistry and the effect of sialic acid and calcium removal on its structure and cellular ionic exchange. Circulat. Res.41, 702–714 (1977).

    PubMed  Google Scholar 

  31. Froehlich, J. P., E. G. Lakatta, E. Beard, H. A. Spurgeon, M. L. Weisfeldt, G. Gerstenblith: Studies of sarcoplasmic reticulum function and contraction duration in young adult and aged rat myocardium. J. Mol. Cell. Cardiol.10, 427–438 (1978).

    PubMed  Google Scholar 

  32. Gergely, J.: Some aspects of the role of the sarcoplasmic reticulum and the tropomyosin-troponin system in the control of muscle contraction by calcium ions. Circulat. Res34/35 (Suppl. III) III 74-III 81 (1974).

    Google Scholar 

  33. Gertz, E. W., M. L. Hess, R. F. Lain, F. N. Briggs: Activity of vesicular calcium pump in the spontaneously failing heart-lung preparation. Circulat. Res.20, 477–484 (1967).

    PubMed  Google Scholar 

  34. Gervais, A., L. K. Lane, B. M. Anner, G. E. Lindenmayer, A. Schwartz: A possible molecular mechanism of the action of digitalis. Circulat. Res.40, 8–14 (1977).

    PubMed  Google Scholar 

  35. Godfraind, T., J. Ghysel-Burton: Binding sites related to ouabain-induced stimulation of inhibition of the sodium pump. Nature265, 165–166 (1977).

    PubMed  Google Scholar 

  36. Grupp, G., I. Grupp, A. Schwartz: Lack of effect of neuraminidase on responses of isolated guinea-pig heart preparations to ouabain. J. Mol. Cell. Cardiol.12, 1471–1474 (1980).

    PubMed  Google Scholar 

  37. Hansford, R. G., L. Cohen: Relative importance of pyruvate dehydrogenase interconversion and feed-back inhibition in the effect of fatty acids on pyruvate oxidation by rat heart mitochondria. Arch. Biochem. Biophys.191, 65–81 (1978).

    PubMed  Google Scholar 

  38. Harigaya, S., A. Schwartz: Rate of calcium binding and uptake in normal and failing human cardiac muscle. Membrane vesicles (relaxing system and mitochondria). Circulat. Res.35, 781–794 (1969).

    Google Scholar 

  39. Harrow, J. A. C., P. K. Das, N. S. Dhalla: Influence of some divalent cations on heart sarcolemmal bound enzymes and calcium binding. Biochem. Pharmacol.27, 2605–2609 (1978).

    PubMed  Google Scholar 

  40. Hearse, D. J.: Oxygen deprivation and early myocardial contractile failure: a reassessment of the possible role of adenosine triphosphate. Amer. J. Cardiol.44, 1115–1121 (1979).

    PubMed  Google Scholar 

  41. Holroyde, M. J., E. Howe, R. J. Solaro: Modification of calcium requirements for activation, of cardiac myofibrillar ATPase by cyclic AMP dependent phosphorylation. Biochim. Biophys. Acta586, 63–69 (1979).

    Google Scholar 

  42. Horackova, M., G. Vassort: Sodium-calcium exchange in regulation of cardiac contractility. J. Gen. Physiol.73, 403–424 (1979).

    PubMed  Google Scholar 

  43. Hron, W. T., G. J. Jesmok, Y. B. Lombardo, L. A. Menahan, J. J. Lech: Calcium dependency of hormone stimulated lipolysis in the perfused rat heart. J. Mol. Cell. Cardiol.9, 733–748 (1977).

    PubMed  Google Scholar 

  44. Hui, C. W., M. Drummond, G. I. Drummond: Calcium accumulation and cyclic AMP-stimulated phosphorylation in plasma membrane-enriched preparations of myocardium. Arch. Biochem. Biophys173, 415–427 (1976).

    PubMed  Google Scholar 

  45. Hunter, D. R., R. A. Haworth, J. H. Southard: Relationship between configuration, function and permeability in calcium-treated mitochondria. J. Biol. Chem.251, 5069–5077 (1976).

    PubMed  Google Scholar 

  46. Huxley, A. F., R. M. Simmons: Proposed mechanism of force generation in striated muscle. Nature233, 533–538 (1971).

    PubMed  Google Scholar 

  47. Ignarro, L. J.: Regulation of lysosomal enzyme release by prostaglandins, autonomic neurohormones and cyclic nucleotides, in: Lysosomes in Biology and Pathology, eds. J. J. Dingle and R. T. Dean (Elsevier Publishing Co., New York, 1975), p. 481.

    Google Scholar 

  48. Isenberg, G., U. Kolckner: Glycocalyx is not required for slow inward calcium current in isolated rat heart myocytes. Nature284, 358–360 (1980).

    PubMed  Google Scholar 

  49. Julian, F. J., R. L. Moss, M. R. Sollins: The mechanism for vertebrate striated muscle contraction. Circulat. Res.42, 2–14 (1978).

    PubMed  Google Scholar 

  50. Jundt, H., H. Porzig, H. Reuter, J. W. Stucki: The effect of substances releasing intracellular calcium ions on sodium-dependent calcium efflux from guineapig auricles. J. Physiol. (Lond.)246, 229–253 (1975).

    Google Scholar 

  51. Kameyama, T., J. D. Etlinger: Calcium-dependent regulation of protein synthesis and degradation in muscle. Nature279, 344–346 (1979).

    PubMed  Google Scholar 

  52. Katz, A. M.: Role of the contractile proteins and sarcoplasmic reticulum in the response of the heart to catecholamines: An historical review. Adv. Cyclic Nucleotide Res.II, 303–343 (1979).

    Google Scholar 

  53. Katz, A. M., H. Reuter: Cellular calcium and cardiac cell death. Amer. J. Cardiol.44, 188–190 (1979).

    PubMed  Google Scholar 

  54. Kramer, J. H., J. P. Chovan, S. W. Schaffer: Effect of taurine on calcium paradox and ischemic heart failure. Amer. J. Physiol.240, H238–H246 (1981).

    Google Scholar 

  55. Langer, G. A.: Ion fluxes in cardiac excitation and contraction and their relation to myocardial contractility. Physiol. Rev.48, 708–757 (1968).

    PubMed  Google Scholar 

  56. Langer, G. A.: Calcium in mammalian myocardium. Localization, control and the effects of digitalis. Circulat. Res.35 (Suppl. 3), 91–98 (1974).

    PubMed  Google Scholar 

  57. Langer, G. A.: Events at the cardiac sarcolemma-localization and movement of contractile-dependent calcium. Fed. Proc.35, 1274–1278 (1976).

    PubMed  Google Scholar 

  58. Langer, G. A.: Ionic basis of myocardial contractility. Ann. Rev. Medicine28, 13–20 (1977).

    Google Scholar 

  59. Langer, G. A.: Relationship between myocardial contractility and the effects of digitalis on ionic exchange. Fed. Proc.36, 2231–2234 (1977).

    PubMed  Google Scholar 

  60. Langer, G. A.: The structure and function of the myocardial cell surface., Amer. J. Physiol.235, H461–H468 (1978).

    Google Scholar 

  61. Langer, G. A.: The role of calcium in the control of myocardial contractility: An update. J. Mol. Cell. Cardiol.12, 231–239 (1980).

    PubMed  Google Scholar 

  62. Langer, G. A., A. J. Brady: Calcium flux in the mammalian ventricular myocardium. J. Gen. Physiol.46, 703–719 (1963).

    PubMed  Google Scholar 

  63. Langer, G. A., J. S. Frank, L. M. Nudd: Correlation of calcium exchange, structure and function in myocardial tissue culture., Amer. J. Physiol.237, H239–H246 (1979).

    Google Scholar 

  64. Lee, C. O., D. Y. Uhm, K. Dresdner: Sodium-calcium exchange in rabbit heart muscle cells. Direct measurement of sarcoplasmic Ca2+ activity. Science209, 699–701 (1980).

    PubMed  Google Scholar 

  65. Lee, S. L., N. S. Dhalla: Subcellular calcium transport in failing hearts due to calcium deficiency and overload. Amer. J. Physiol.231, 1159–1165 (1976).

    PubMed  Google Scholar 

  66. Lee, Y. C. P., M. B. Visscher: Perfusate cations and contracture and Ca, Cr, PCr, and ATP in rabbit myocardium. Amer. J. Physiol.219, 1637–1641 (1970).

    PubMed  Google Scholar 

  67. Lehninger, A. L.: Ca2+ transport by mitochondria and its possible role in the cardiac contraction-relaxation cycle. Circulat. Res.34/35 (Suppl. III), III 83-III 88 (1974).

    Google Scholar 

  68. Le Peuch, C. J., J. Haieck, J. G. Demaille: Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium-callmodulin-dependent phosphorylations. Biochemistry18, 5150–5157 (1979).

    PubMed  Google Scholar 

  69. Limas, C. J.: Calcium-binding sites in rat myocardial sarcolemma. Arch. Biochem. Biophys.179, 302–309 (1977).

    PubMed  Google Scholar 

  70. Lossnitzer, K., E. Bajusz: Water and electrolyte alterations during the life course of the B 10 14.6 Syrian Golden hamster. A disease model of a hereditary cardiomyopathy. J. Mol. Cell. Cardiol.6, 163–171 (1974).

    PubMed  Google Scholar 

  71. Marban, E., T. J. Rink, R. W. Tsien, R. Y. Tsien: Free calcium in heart muscle at rest and during contraction measured with Ca2+-sensitive microelectrodes. Nature286, 845–850 (1980).

    Article  Google Scholar 

  72. McCollum, W. B., C. Crow, S. Harigaya, E. Bajusz, A. Schwartz: Calcium binding by cardiac relaxing system isolated from myopathic Syrian hamsters. J. Mol. Cell. Cardiol.1, 445–457 (1970).

    PubMed  Google Scholar 

  73. Michell, R. H.: Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta415, 81–147 (1975).

    PubMed  Google Scholar 

  74. Michell, R. H.: Inositol phospholipids in membrane function. Trends Biochem. Sci.4, 128–131 (1979).

    Google Scholar 

  75. Miller, C., E. Racker: Ca++-induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. Cell9, 283–300 (1976).

    Google Scholar 

  76. Miyamoto, H., E. Racker: Solubilization and partial purification of the Ca2+/Na+ antiporter from the plasma membrane of bovine heart. J. Biol. Chem.255, 2656–2658 (1980).

    PubMed  Google Scholar 

  77. Morad, M., J. Maylie: Calcium and cardiac electrophysiology. Chest78 (Suppl. 1), 166S-173S (1980).

    Google Scholar 

  78. Mukherjee, A., T. M. Wong, G. Templeton, L. M. Buja, J. T. Willerson: Influence of volume dilution, lactate, phosphate and calcium on mitochondrial functions. Amer. J Physiol.237, H224–H238 (1979).

    Google Scholar 

  79. Mullins,L. J.: The generation of electric currents in cardiac fibers by Na/Ca exchange. Amer. J. Physiol.236, C103-C110 (1979).

    PubMed  Google Scholar 

  80. Nayler, W. G., P. M. Grinwald: The effect of verapamil on calcium accumulation during the calcium paradox. J. Mol. Cell. Cardiol.13, 435–441 (1981).

    PubMed  Google Scholar 

  81. Nayler, W. G., P. A. Poole-Wilson, A. Williams: Hypoxia and calcium. J. Mol. Cell. Cardiol.11, 683–706 (1979).

    PubMed  Google Scholar 

  82. Nayler, W. G., R. Ferrari, A. Williams: Protective effect pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischemic and reperfused myocardium. Amer. J. Cardiol.46, 242–248 (1980).

    PubMed  Google Scholar 

  83. Okita, G. T.: Discussion of Na+, K+-ATPase inhibition from digitalis inotrophy. Fed. Proc.36, 2225–2230 (1977).

    PubMed  Google Scholar 

  84. Ong, S. D., L. E. Bailey: Two functionally distinct calcium pools in the excitation-contraction coupling process. Experientia28, 1446–1447 (1972).

    PubMed  Google Scholar 

  85. Ozawa, E., K. Hosoi, S. Ebashi: Reversible stimulation of muscle phosphorylase b kinase by low concentrations of calcium ions. J. Biochem.61, 531–533 (1967).

    PubMed  Google Scholar 

  86. Panagia, V., C. E. Heyliger, P. C. Choy, N. S. Dhalla: Solubilization of rat heart sarcolemma 5′-nucleotidase by phosphatidylinositol-specific phospholipase C. Biochim. Biophys. Acta640, 802–806 (1981).

    PubMed  Google Scholar 

  87. Peng, C.-F., J. J. Kane, K. D. Straub, M. L. Murphy: Improvement of mitochondrial energy production in ischemic myocardium by in vivo infusion of ruthenium red. J. Cardiovasc. Pharmacol.2, 45–54 (1980).

    PubMed  Google Scholar 

  88. Pieterson, W. A., J. J. Volwerk, G. H. DeHaas: Interaction of phospholipase A2 and its zymogen with divalent metal ions. Biochemistry13, 1439–1445 (1974).

    PubMed  Google Scholar 

  89. Pitts, B. J. R.: Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. J. Biol. Chem.254, 6232–6235 (1979).

    PubMed  Google Scholar 

  90. Philipson, K. D., A. Y. Nishimoto: Na+−Ca2+ exchange is affected by membrane potential in cardiac sarcolemmal vesicles. J. Biol. Chem.255, 6880–6882 (1980).

    PubMed  Google Scholar 

  91. Philipson, K. D., G. A. Langer: Sarcolemmal-bound calcium and contractility in the mammalian myocardium. J. Mol. Cell. Cardiol.11, 857–875 (1979).

    PubMed  Google Scholar 

  92. Philipson, K. D., D. M. Bers, A. Y. Nishimoto: The role of phospholipids in the calcium binding of isolated cardiac sarcolemma. J. Mol. Cell. Cardiol.12, 1159–1173 (1980).

    PubMed  Google Scholar 

  93. Rand, R. P., S. Sengupta: Cardiolipin forms hexagonal structures with divalent cations. Biochim. Biophys. Acta255, 484–492 (1972).

    PubMed  Google Scholar 

  94. Reeves, J. P., J. L. Sutko: Sodium-calcium ion exchange in cardiac membrane vesicles. Proc. Nat. Acad. Sci.76, 590–594 (1979).

    PubMed  Google Scholar 

  95. Reeves, J. P., J. L. Sutko: Sodium-calcium exchange activity generates a current in cardiac membrane vesicles. Science208, 1461–1464 (1980).

    PubMed  Google Scholar 

  96. Reuter, H.: Exchange of calcium ions in the mammalian myocardium. Circulat. Res.34, 599–605 (1974).

    PubMed  Google Scholar 

  97. Reuter, H., N. Seitz: The dependence of calcium efflux from cardiac muscle on temperature and ionic composition J. Physiol. (Lond.)195, 451–470 (1968).

    Google Scholar 

  98. Ringer, S.: A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. (Lond.)4, 29–42 (1883).

    Google Scholar 

  99. Ruigrok, T. J. C., A. B. T. J. Boink, A. Slade, A. N. E. Zimmerman, F. L. Meijler, W. G. Nayler: The effect of verapamil on the calcium paradox. Amer. J. Pathol.98, 769–790 (1980).

    Google Scholar 

  100. Schneider, J. A., N. Sperelakis: The demonstration of energy dependence of the isoproterenol-induced transcellular Ca2+ current in isolated perfused guinea-pig hearts—An explanation for mechanical failure of ischemic myocardium. J. Surg. Res.16, 389–403 (1974).

    PubMed  Google Scholar 

  101. Shen, A. C., R. B. Jennings: Myocardial calcium and magnesium in acute ischemic injury. Amer. J. Pathol.67, 417–440 (1972).

    Google Scholar 

  102. Shigenobu, K., J. A. Schneider, N. Sperelakis: Verpamil blockade of slow Na+ and Ca++ responses in myocardial cells. J. Pharmacol. Exp. Ther.190, 280–288 (1974).

    PubMed  Google Scholar 

  103. Shine, K. I., S. D. Serena, G. A. Langer: Kinetic localization of contractile calcium in rabbit myocardium. Amer. J. Physiol.221, 1408–1417 (1971).

    PubMed  Google Scholar 

  104. Singal, P. K., M. P. Matsukubo, N. S. Dhalla: Calcium-related changes in the ultrastructure of mammalian myocardium. Brit. J. Exp. Path.60, 96–106 (1979).

    PubMed  Google Scholar 

  105. Sink, J. D., W. D. Currie, G. L. Pellom, R. C. Hill, W. R. Chitwood, A. S. Wechsler: Correlation, of mitochondrial function and ischemic contracture. J. Thoracic Cardiovasc. Surg.79, 570–578 (1980).

    Google Scholar 

  106. Sordahl, L. A., W. B. McCollum, W. G. Wood, A. Schwartz: Mitochondria and sarcoplasmic reticulum function in cardiac hypertrophy and failure. Amer. J. Physiol.224, 497–502 (1973).

    PubMed  Google Scholar 

  107. Sperelakis, N., J. A. Schneider: A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell. Amer. J. Cardiol.37, 1079–1085 (1976).

    Article  PubMed  Google Scholar 

  108. St. Louis, P. J., P. V. Sulakhe: Adenosine triphosphate-dependent calcium binding and accumulation by guinea-pig cardiac sarcolemma. Can. J. Biochem.54, 946–956 (1976).

    PubMed  Google Scholar 

  109. St. Louis, P. J., P. V. Sulakhe: Phosphorylation of cardiac sarcolemma by endogenous or exogenous protein kinases. Arch. Biochem. Biophys.198, 227–240 (1979).

    PubMed  Google Scholar 

  110. Takeo, S., P. Duke, G. M. L. Taam, P. K. Singal, N. S. Dhalla: Effects of lanthanum on heart sarcolemma ATPase and calcium binding activities. Can. J. Physiol. Pharmacol.57, 496–503 (1979).

    PubMed  Google Scholar 

  111. Teiger, D. G., A. Farah: Calcium movements in resting and stimulated isolated rabbit atria. J. Pharmacol. Exp. Ther.157, 8–18 (1967).

    PubMed  Google Scholar 

  112. Tomlinson, C. W., J. C. Yates, N. S. Dhalla: Relationship among changes in intracellular calcium stores, ultrastructure, and contractility of myocardium. Recent Adv. Stud. Cardiac Struct. Metab.4, 331–345 (1974).

    PubMed  Google Scholar 

  113. Trumble, W. R., J. L. Sutko, J. P. Reeves: ATP dependent calcium transport in cardiac sarcolemmal membrane vesicles. Life Sci.27, 207–214 (1980).

    PubMed  Google Scholar 

  114. Tsien, R. W.: Adrenaline-like effects of intracellular iontophoresis, of cyclic AMP in cardiac Purkinje fibres. Nature New Biol.245, 120–121 (1973).

    PubMed  Google Scholar 

  115. Tsien, R. W., R. S. Kass, R. Weingart: Calcium ions and membrane current changes induced by digitalis in cardiac purkinje fibers. Ann. N. Y. Acad. Sci.307, 483–490 (1978).

    PubMed  Google Scholar 

  116. Tuana, B. S., A. Dzurba, V. Panagia, N. S. Dhalla: Stimulation of heart sarcolemmal calcium pump by calmodulin. Biochem. Biophys. Res. Comm.100, 1245–1250 (1981).

    PubMed  Google Scholar 

  117. Turner, R. S., M. M. Burger: Involvement of a carbohydrate group in the active site for surface guided reassociation of animal cells. Nature244, 509–510 (1973).

    Google Scholar 

  118. Vasdev, S. C., K. J. Kako, G. P. Biro: Phospholipid composition of cardiac mitochondria and lysosomes in experimental myocardial ischemia in the dog. J. Mol. Cell. Cardiol.11, 1195–1200 (1979).

    PubMed  Google Scholar 

  119. Vogel, S., N. Sperelakis: Induction of slow action potentials by microiontophoresis of cyclic AMP into heart cells. J. Mol. Cell. Cardiol.13, 51–64 (1981).

    PubMed  Google Scholar 

  120. Weingart, R., R. S. Kass, R. W. Tsien: Is digitalis inotrophy associated with enhanced slow inward calcium current? Nature273, 389–392 (1978).

    PubMed  Google Scholar 

  121. Weiss, D. L., B. Surawicz, I. Rubenstein: Myocardial lesions of calcium deficiency causing irreversible myocardial failure. Amer. J. Pathol.48, 653–666 (1966).

    Google Scholar 

  122. Winegrad, S., A. M. Shanes: Calcium flux and contractility in guinea pig atria. J. Gen. Physiol.45, 371–394 (1962).

    PubMed  Google Scholar 

  123. Wrogeman, K., E. G. Nylen: Mitochondrial calcium overloading in cardiomyopathic hamsters. J. Mol. Cell. Cardiol.10, 185–195 (1978).

    PubMed  Google Scholar 

  124. Yates, J. C., N. S. Dhalla: Structural and functional changes associated with failure and recovery of hearts after perfusion with Ca2+ free medium. J. Mol. Cell. Cardiol.7, 91–103 (1975).

    PubMed  Google Scholar 

  125. Ziegelhoffer, A., M. B. Anand-Srivastava, R. L. Khandelwal, N. S. Dhalla: Activation of heart sarcolemmal Ca2+/Mg2+ ATPase by cyclic AMP-dependent protein kinase. Biochem. Biophys. Res. Commun.89, 1073–1081 (1979).

    PubMed  Google Scholar 

  126. Ziegelhoffer, A., P. K. Das, G. P. Sharma, P. K. Singal, N. S. Dhalla: Propranolol effects on myocardial ultrastructure and high energy phosphates in anaesthetized dogs subjected to ischemia and reperfusion. Can. J. Physiol. Pharmacol.57, 979–986 (1979).

    PubMed  Google Scholar 

  127. Zimmerman, A. N. E., W. Daems, W. C. Hulsmann, J. Snijder, E. Wisse, D. Durrer: Morphological changes of heart muscle caused by successive perfusion with calcium-free and calcium-containing solution (Calcium-paradox). Cardiovasc. Res.1, 201–209 (1967).

    Google Scholar 

  128. Zimmerman, A. N. E., W. C. Hulsmann: Paradoxical influence of calcium ions on the permeability of the cell membranes of the isolated rat heart. Nature211, 646–647 (1966).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a grant from the Medical Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhalla, N.S., Pierce, G.N., Panagia, V. et al. Calcium movements in relation to heart function. Basic Res Cardiol 77, 117–139 (1982). https://doi.org/10.1007/BF01908167

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01908167

Key words

Navigation