Skip to main content
Log in

Systemic and regional vascular effects of atrial natriuretic peptide in a rat model of chronic heart failure

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

To characterize the systemic and regional vascular effects of atrial natriuretic peptide (ANP) in chronic heart failure, central hemodynamics, regional blood flow and plasma ANP levels were determined in a rat model of myocardial infarction and failure and in sham-operated animals. Measurements were made in the conscious state before and after intravenous rANP [99-126] (8 μg bolus followed by continuous infusion of 1.0 μg/kg/min). With this protocol, ANP significantly decreased cardiac output, right atrial, left ventricular enddiastolic and arterial pressures and there were increases in heart rate, systemic and intestinal vascular resistances in sham animals. Renal blood flow per gram of tissue was unchanged with ANP, but when expressed as a percentage of cardiac output, increased significantly, indicating a preferential renal vasodilatory effect of ANP. In rats with infarction and failure, this dose did not alter cardiac output or arterial pressure, but decreased right atrial and left ventricular blood flow. Although significantly reduced as compared to the control group, renal blood flow was not improved with ANP in the heart failure group. ANP plasma levels of the heart failure group were elevated at baseline (p<0.01), and increased 5–10 times after infusion of rANP. Thus, in rats with chronic heart failure, the renal vascular effects of ANP are blunted, which may, in part, explain the failure of ANP to restore the altered volume homeostasis in heart failure despite elevated ANP plasma levels. However, the effects on venous return were preserved which, in turn, improved cardiac performance via a reduction of preload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Ballermannn BJ, Hoover RL, Karnovsky MJ, Brenner BM (1985) Physiologic regulation of atrial natriuretic peptide receptors in rat renal glomeruli. J Clin Invest 76:2049–2056

    PubMed  Google Scholar 

  2. Ballermann BJ, Brenner BM (1986) Role of atrial peptides in body fluid homeostasis. Circ Res 58:619–630

    PubMed  Google Scholar 

  3. Breuhaus BA, Saneii HH, Brandt MA, Chimoskey JE (1985) Atriopeptin II lowers cardiac output in conscious sheep. Am J Physiol 249:R776-R780

    PubMed  Google Scholar 

  4. Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamin sensitivity and adrenergic receptor density in failing human hearts. N Engl J Med 307:205–211

    PubMed  Google Scholar 

  5. Camargo MJF, Kleinert HD, Atlas SA, Sealey JE, Laragh JH, Maack T (1984) Ca-dependent hemodynamic and natriuretic effects of atrial extract in isolated rat kidney. Am J Physiol 246:F447-F456

    PubMed  Google Scholar 

  6. Cody RJ, Atlas SA, Laragh JH, Kubo SH, Covit AB, Ryman KS, Shaknovich A, Pondolfino K, Clark M, Camargo MJF, Scarborough RM, Lewicki JA (1986) Atrial natriuretic factor in normal subjects and heart failure patients. J Clin Invest 78:1362–1374

    PubMed  Google Scholar 

  7. Cohn JN, Franciosa JA (1977) Vasodilator therapy of cardiac failure. N Engl J Med 297:27–31

    PubMed  Google Scholar 

  8. Colucci WS, Alexander RW, Williams GH, Rude RE, Holman BL, Konstam MA, Wynne J, Mudge GH, Braunwald E (1981) Decreased lymphocyte beta-adrenergic-receptor density in patients with heart failure and tolerance to the beta-adrenergic agonist pirbuterol. N Engl J Med 305:185–190

    PubMed  Google Scholar 

  9. Crozier IG, Ikram H, Gomez HJ, Nicholls MG, Espiner EA, Warner NJ (1986) Haemodynamic effects of atrial peptide infusion in heart failure. Lancet:1242–1245

  10. Cuneo RC, Espiner EA, Nicholls MG, Yandle TG, Joyce SL, Gilchrist NL (1986) Renal, hemodynamic, and hormonal responses to atrial natriuretic peptide infusions in normal man, and effect of sodium intake. J Clin Endocrinol Metab 63:946–953

    PubMed  Google Scholar 

  11. Currie MG, Geller DM, Cole BR, Boylan JG, YuSheng W, Holmberg SM, Needlemen P (1983) Bioactive cardiac substances: potent vasorelaxant activity in mammalian atria. Science Wash DC 221:71–73

    Google Scholar 

  12. De Bold AJ, Borenstein HB, Voress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94

    PubMed  Google Scholar 

  13. Drexler H, Depenbusch JW, Truog AG, Zelis R, Flaim SF (1985) Effects of diltiazem on cardiac function and regional blood flow at rest and during exercise in a conscious rat preparation of chronic heart failure (myocardial infarction). Circulation 71:1262–1270

    PubMed  Google Scholar 

  14. Drexler H, Toggart EJ, Glick MR, Heald J, Flaim SF, Zelis R (1986) Regional vascular adjustments during recovery from myocardial infarction in rat. J Am Coll Cardiol 8:134–142

    PubMed  Google Scholar 

  15. Drexler H, Lang RE, Finkh M, Wollschläger H, Just H (1987) Atrial natriuretic peptide in experimental heart failure: atrial content, plasma-levels and effects of volume loading. J Am Coll Cardiol 9:119A (abstr)

    Google Scholar 

  16. Dunn BR, Ichikawa I, Pfeffer JM, Troy JL, Brenner BM (1986) Renal and systemic hemodynamic effects of synthetic atrial natriuretic peptide in the anesthetized rat. Circ Res 59:237–246

    PubMed  Google Scholar 

  17. Fishbein MC, Maclean D, Maroko PR (1978) Experimental myocardial infarction in the rat. Am J Pathol 90:57

    PubMed  Google Scholar 

  18. Flaim SF, Weitzel RL, Zelis R (1981) Mechanism of action of nitroglycerin during exercise in a rat model of heart failure. Circ Res 49:458–468

    PubMed  Google Scholar 

  19. Flaim SF, Nellis SH, Toggart EJ, Drexler H, Kanda K, Newman ED (1984) Multiple simultaneous determinations of hemodynamics and flow distribution in conscious rat. J Pharmacol Methods 11:1–39

    PubMed  Google Scholar 

  20. Flynn TG, DeBold ML, DeBold AJ (1983) The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. Biochem Biophys Res Commun 117:859–865

    PubMed  Google Scholar 

  21. Forssmann WG, Hock D, Lottspeich F, Henschen A, Kreye V, Christmann M, Reinecke M, Metz J, Carlquist M, Mutt V (1983) The right ventricle of the heart is an endocrine organ. Cardiodilation as a peptide hormone candidate. Anat Embryol 168:307–313

    PubMed  Google Scholar 

  22. Forssmann WG, Birr C, Carlquist M, Christmann M, Fincke R, Henschen A, Hock D, Kirchheim H, Kreye V, Lottspeich F (1984) The auricular myocardiocytes of the heart constitute an endocrine organ. Characterization of a porcine cardiac peptide hormone, cardiodilatin-126. Cell Tissue Res 238:425–430

    PubMed  Google Scholar 

  23. Garcia R, Thibault G, Cantin M, Genest J (1984) Effect of a purified atrial natriuretic factor on rat and rabbit vascular stripes and vascular beds. Am J Physiol 247:R34-R39

    PubMed  Google Scholar 

  24. Garcia R, Thibault G, Gutkowska J, Cantin M, Genest J (1985) Changes of regional blood flow induced by atrial natriuretic factor (ANF) in conscious rats. Life Sci 36:1687–1692

    PubMed  Google Scholar 

  25. Heymann MA, Payne BD, Hoffman JIE, Rudolph AM (1977) Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Res 20:55

    Google Scholar 

  26. Hintze T, Currie MG, Needleman P (1985) Atriopeptins: renal specific vasodilators in conscious dogs. Am J Physiol 248:H587-H591

    PubMed  Google Scholar 

  27. Hirata Y, Tomita M, Takada S, Yoshimi H (1985) Vascular receptor binding activities and cyclic GMP responses by synthetic human and rat atrial natriuretic peptides (ANP) and receptor down-regulation by ANP. Biochem Biophys Res Commun 128:538–546

    PubMed  Google Scholar 

  28. Kleinert HD, Maack T, Atlas SA, Januszewicz A, Sealey JE, Laragh JH (1984) Atrial natriuretic factor inhibits angiotensin-, norepinephrine-, and potassium-induced vascular contractility. Hypertension 6 (Suppl I):I143-I147

    PubMed  Google Scholar 

  29. Kleinert HD, Volpe M, Odell G, Marion D, Atlas SA, Camargo MJ, Laragh JH, Maack T (1986) Cardiovascular effects of atrial natriuretic factor in anesthetized and conscious dogs. Hypertension 8:312–316

    PubMed  Google Scholar 

  30. Koike H, Sada T, Miyamoto M, Oizumi K, Sugiyama M, Inagami T (1984) Atrial natriuretic factor selectively increases renal blood flow in conscious spontaneously hypertensive rats. J Eur Pharmacol 104:391–392

    Google Scholar 

  31. Lang RE, Tholken H, Ganten D, Luft FC, Ruskoaho H, Unger T (1985) Atrial natriuretic factor: A circulating hormone stimulated by volume loading. Nature 314:264–266

    PubMed  Google Scholar 

  32. Lappe RW, Smits JFM, Todt JA, Debets JJM, Wendt RL (1985) Failure of atriopeptin II to cause arterial vasodilation in the conscious rat. Circ Res 56:606–612

    PubMed  Google Scholar 

  33. Lappe RW, Todt JA, Wendt RL (1985) Mechanism of action of vasoconstrictor responses to atriopeptin II in conscious SHR. Am J Physiol 249:R781-R786

    PubMed  Google Scholar 

  34. Maclean D, Fishbein MC, Braunwald E, Maroko PR (1978) Long-term preservation of ischemic myocardium after experimental coronary artery occlusion. J Clin Invest 61:541–551

    PubMed  Google Scholar 

  35. Needleman P, Greenwald JE (1986) Atriopeptine: a cardiac hormone intimately involved in fluid, electrolyte, and blood pressure homeostasis. N Engl J Med 314:828–834

    PubMed  Google Scholar 

  36. Oshima T, Currie MG, Geller DM, Needleman P (1984) An atrial peptide is a potent renal vasodilator substance. Circ Res 54:612–616

    PubMed  Google Scholar 

  37. Pegram BL, Kardon MB, Trippodo NC, Cole FE, MacPhee AA (1985) Atrial extract: hemodynamics in Wistar Kyoto and spontaneously hypertensive rats. Am J Physiol 249:H265-H271

    PubMed  Google Scholar 

  38. Riegger AJG, Kromer EP, Kochsiek K (1985) Der natriuretische Vorhoffaktor bei schwerer kongestiver Herzinsuffizienz. Dtsch med Wschr 110:1607–1610

    PubMed  Google Scholar 

  39. Rubin SA, Fishbein MC, Swan HJC (1983) Compensatory hypertrophy in the heart after myocardial infarction in the rat. J Am Coll Cardiol 1:1435

    PubMed  Google Scholar 

  40. Schiffrin EL (1986) Down regulation of binding sites for atrial natriuretic peptide in platelets of patients with congestive heart failure. Circulation 74 (Suppl II):II-463 (abstr)

    Google Scholar 

  41. Schwartz D, Geller DM, Manning PT, Siegel NR, Fok KF, Smith GE, Needleman P (1985) Ser-Leu-Arg-Arg-atriopeptin III: The major circulating form of atrial peptide. Science 229:397–400

    PubMed  Google Scholar 

  42. Scriven TA, Burnett JC (1985) Effects of synthetic atrial natriuretic peptide on renal function and renin release in acute experimental heart failure. Circulation 72:892–897

    PubMed  Google Scholar 

  43. Shenker Y, Sider RS, Ostafin EA, Grekin RJ (1985) Plasma levels of immunoreactive atrial natriuretic factor in healthy subjects and in patients with edema. J Clin Invest 76:1684–1687

    PubMed  Google Scholar 

  44. Sweet CS, Ludden CT, Frederick CM, Ribeiro LGT, Nussberger J, Slater EE, Blaine EH (1985) Hemodynamic effects of synthetic atrial natriuretic factor (ANF) in dogs with acute left ventricular failure. European J Pharmacol 115:267–276

    Google Scholar 

  45. Trippodo NC, Cole FE, Frohlich ED, MacPhee AA (1986) Atrial natriuretic peptide decreases circulatory capacitance in areflexic rats. Circ Res 59:291–296

    PubMed  Google Scholar 

  46. Tsunoda K, Hodsman GP, Sumithran E, Johnston CI (1986) Atrial natriuretic peptide in chronic heart failure in the rat: a correlation with ventricular dysfunction. Circ Res 59:256–261

    PubMed  Google Scholar 

  47. Volpe M, Odell G, Kleinert HD, Müller F, Camargo MJ, Laragh JH, Maack T, Vaughan ED, Atlas SA (1985) Effect of atrial natriuretic factor on blood pressure, renin, and aldosterone in goldblatt hypertension. Hypertension 7 (Suppl I):I43-I48

    PubMed  Google Scholar 

  48. Volpe M, Sosa RE, Müller FB, Camargo MJF, Glorioso N, Laragh JH, Maack T, Atlas SA (1986) Differing hemodynamic responses to atrial natriuretic factor in two models of hypertension. Am J Physiol 250:H871-H878

    PubMed  Google Scholar 

  49. Wagner HN, Rhodes BA, Sasaki Y, Ryan JP (1969) Studies of the circulation with radioactive microspheres. Invest Radiol 4:374–386

    PubMed  Google Scholar 

  50. Wakitani K, Oshima T, Loewy AD, Holmberg SW, Cole BR, Adams SP, Fok KF, Currie MG, Needleman P (1985) Comparative vascular pharmacology of the atriopeptins. Circ Res 56:621–627

    PubMed  Google Scholar 

  51. Wangler RD, Breuhaus BA, Otero HD, Hastings DA, Holzman MD, Saneii HH, Sparks HV, Chimoskey JE (1985) Coronary vasoconstrictor effects of atriopeptin II. Science 230:558–561

    PubMed  Google Scholar 

  52. Winer BJ (1971) Statistical principles in experimental design. McGraw-Hill, New York

    Google Scholar 

  53. Zelis R, Flaim SF (1982) Alterations in vasomotor tone in congestive heart failure. Prog Cardiovasc Dis 24:437–459

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft (DFG, Dr 148/3-1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drexler, H., Finkh, M., Höing, S. et al. Systemic and regional vascular effects of atrial natriuretic peptide in a rat model of chronic heart failure. Basic Res Cardiol 82, 517–529 (1987). https://doi.org/10.1007/BF01907221

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907221

Key words

Navigation